首页 接线图文章正文

电路的暂态分析

接线图 2023年07月21日 22:50 180 admin

电路的暂态分析是对电路从一个稳定状态变化到另一个稳定状态时中间经历的过渡状态的分析。

电路中产生暂态过程的原因是由于电路的接通、断开、短路、电路参数改变等——即换路时,储能元件的能量不能跃变而产生的。

(1)换路定则与电压、电流初始值的确定

换路定则用来确定暂态过程中电压、电流的初始值,其理论根据是能量不能跃变。

在换路瞬间储能元件的能量不能跃变,即

电感元件的储能 电路的暂态分析  第1张 不能跃变

电容元件的储能 电路的暂态分析  第2张 不能跃变

否则将使功率达到无穷大

设t=0为换路瞬间,而以t=0表示换路前的终了瞬间,t=0+表示换路后的初始瞬间。

则换路定则用公式表示为: 电路的暂态分析  第3张 电路的暂态分析  第4张

电压与电流初始值的确定

* 作出t=0的等效电路,在此电路中,求出 电路的暂态分析  第5张电路的暂态分析  第6张

* 由换路定则得到电路的暂态分析  第7张电路的暂态分析  第8张

* 作出t=0+的等效电路

电路的暂态分析  第9张

换路前,若储能元件没有储能,则在t=0+的等效电路中,可将电容短路,而将电感元件开路;若储能元件储有能量,则在t=0+的等效电路中,电容可用电压为 电路的暂态分析  第10张 的理想电压源代替,电感元件则可用电流为 电路的暂态分析  第11张 的理想电流源代替。

*在t=0+的等效电路中,求出待求电压和电流的初始值。

(2)RC电路的响应

在t=0时将开关S合到1的位置

根据KVL,t≥0 时电路的微分方程为

电路的暂态分析  第12张

设换路前电容元件已有储能,即 电路的暂态分析  第13张 ,解上述微分方程,得

电路的暂态分析  第14张

t=RC单位是秒,所以称它为RC电路的时间常数。

电路的暂态分析  第15张

这种由外加激励和初始储能共同作用引起的响应,称为RC 电路的全响应。

若换路前电容元件没有储能,即 电路的暂态分析  第16张 ,则

电路的暂态分析  第17张

初始储能为零,由外加电源产生的响应,称为RC电路的零状态响应。

uC随时间变化曲线

时间常数t=RC,当t=t时,uC= 63.2%U

uC由初始值零按指数规律向稳态值增长,电路中其他各量要具体分析才能确定。

若在t=0 时将开关S由1合到2的位置,如下图。这时电路中外加激励为零,电路的响应由电容的初始储能引起的,故常称为RC 电路的零输入响应。

电容两端的电压uC由初始值U0向稳态值零衰减,这是电容的放电过程,其随时间变化表达式为

电路的暂态分析  第18张 电路的暂态分析  第19张

电路的暂态分析  第20张

在零输入响应电路中各电量均由初始值按指数规律向稳态值零衰减。

时间常数t=RC,当t=t 时,uC=36.8%U0

(3)一阶电路暂态分析的三要素法

只含有一个储能元件或可等效为一个储能元件的线性电路称为一阶电路,其微分方程都是一阶常系数线性微分方程。

一阶RC电路响应的表达式:

电路的暂态分析  第21张

归纳为:

电路的暂态分析  第22张

在一阶电路中,只要求出待求量的稳态值、初始值和时间常数t这三个要素,就可以写出暂态过程的解。

(4)RL电路的响应

RL电路的响应可以对照RC电路来学习,例如两者的全响应:

电路的暂态分析  第23张

版权与免责声明

本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

标签: 电容 电源

发表评论

接线图网Copyright Your WebSite.Some Rights Reserved. 备案号:桂ICP备2022002688号-2 接线图网版权所有 联系作者QQ:360888349