首页 接线图文章正文

逆变器电路图讲解,逆变器工作原理图解

接线图 2023年09月11日 20:43 591 admin

简单的逆变器电路图分析

这里介绍的逆变器(见图)主要由MOS场效应管和普通功率变压器组成。其输出功率依赖于MOS场效应管和电源变压器的功率,省去了变压器复杂的绕组,适合电子爱好者业余制作。下面介绍变频器的工作原理和制造工艺。工作原理在这里,我们将详细介绍这款逆变器的工作原理。方波信号发生器(见图3)这里,方波信号发生器由六个反相器CD4069组成。电路中的R1是一个补偿电阻,用来改善电源电压变化引起的振荡频率不稳定。电路的振荡是通过对电容C1充放电来完成的。其振荡频率为f=1/2.2 rc。图中所示电路的最高频率为:fmax=1/2.23.31032.210-6=62.6hz;最小频率fmin=1/2.24.31032.210-6=48.0Hz。由于元器件的误差,实际值会略有不同。对于其他冗余逆变器,输入端子接地以避免影响其他电路。FET驱动电路使用六个反相器CD4069构成方波信号发生器。电路中的R1是一个补偿电阻,用来改善电源电压变化引起的振荡频率不稳定。电路的振荡是通过对电容C1充放电来完成的。其振荡频率为f=1/2.2 rc。图中所示电路的最高频率为:fmax=1/2.23.31032.210-6=62.6hz;最小频率fmin=1/2.24.31032.210-6=48.0Hz。由于元器件的误差,实际值会略有不同。对于其他冗余逆变器,输入端子接地以避免影响其他电路。由于方波信号发生器输出的振荡信号电压最大幅度为0~5V,为了充分驱动功率开关电路,使用TR1和TR2将振荡信号电压放大到0~12V。如图4所示。Mosfet功率开关电路。这是设备的核心。在介绍这部分的工作原理之前,先简单说明一下MOS FET的工作原理。图5 MOSFET也叫MOSFET,是金属氧化物半导体场效应晶体管的缩写。一般有耗尽型和增强型两种。本文使用增强型MOS FET,其内部结构如图5所示。可分为NPN型PNP型。NPN型通常称为N沟道型,PNP型也称为P沟道型。从图中可以看出,N沟道FET的源极和漏极连接到N型半导体,P沟道FET的源极和漏极连接到P型半导体。我们知道一般三极管是通过输入电流来控制输出电流的。然而,对于FET,其输出电流由输入电压(或电场)控制。可以认为输入电流很小或者没有输入电流,使得器件具有很高的输入阻抗,这也是我们称之为FET的原因。图6为了解释MOSFET的工作原理,我们先来了解一个只有一个pn结的二极管的工作过程。如图6所示,我们知道当二极管加上直流电压时(P端为正,N端为负),二极管导通,电流流过其PN结。这是因为当P型半导体端子具有正电压时,N型半导体中的负电子被吸引到具有正电压的P型半导体端子,而P型半导体端子中的正电子向N型半导体端子移动,从而形成传导电流。同样,当二极管加反向电压时(P端接负极,N端接正极),则P型半导体端电压为负,正电子聚集在P型半导体端,负电子聚集在N型半导体端,电子不动,PN结无电流流过,二极管关断。图7a图7b对于场效应晶体管(见图7),当栅极没有电压时,从前面的分析可以看出,源极和漏极之间不会有电流流动,场效应晶体管处于截止状态(图7a)。当向N沟道MOSFET的栅极施加正电压时,由于电场的作用,N型半导体的源极和漏极的负电子被吸引到栅极,但是由于氧化膜的阻挡,

我们也可以想象两个N型半导体之间有一条沟,栅压的建立相当于在两者之间搭建了一座桥梁。电桥的大小由栅极电压决定。图8所示为p沟道MOSFET的工作过程,其工作原理在此类似,不再赘述。图8由C-MOS FET(增强型MOS FET)组成的应用电路的工作过程简述如下(见图9)。该电路结合使用增强型P沟道MOSFET和增强型N沟道MOSFET。当输入端为低电平时,P沟道MOSFET导通,输出端与电源正极相连。当输入端为高电平时,N沟道MOSFET导通,输出端与电源地相连。在这个电路中,P沟道MOSFET和N沟道MOSFET总是工作在相反的状态,它们的相位输入和输出是相反的。这样,我们可以获得更大的电流输出。同时,由于漏电流的影响,栅极电压没有达到0V,通常当栅极电压小于1至2V时,MOSFET截止。不同FET的关断电压略有不同。正因为如此,电路不会因为两个管同时导通而短路。通过以上分析,我们可以在原理图中画出MOS FET电路部分的工作过程(见图10)。工作原理和上面说的一样。当这种低电压、大电流、频率为50Hz的交流信号通过变压器的低压绕组时,会在变压器的高压侧感应出高压交流电压,完成DC到交流的转换。这里需要注意的是,在某些情况下,比如振荡部分停止工作时,变压器的低压侧有时会有较大的电流,所以这个电路的保险丝不能省略或短接。电路板制作要点见图11。所用元件参见图12。逆变器使用的变压器是成品电源变压器,次级电压12V,电流10A,初级电压220V。P沟道MOS FET (2SJ471)的最大漏极电流为30A,FET导通时漏极和源极之间的电阻为25 m。此时如果通10A电流,会有2.5W的功耗。N沟道MOS FET (2SK2956)的最大漏电流为50A。当FET导通时,漏极和源极之间的电阻为7 m。此时,如果通过10A的电流,消耗的功率是0.7W由此我们可以看出,在相同的工作电流下,2SJ471的发热量大约是2SK2956的四倍。所以在考虑暖气片的时候要注意这一点。图13是本文介绍的散热器(100mm100mm17mm)上逆变场效应管的位置分布和连接。虽然FET在开/关时不会产生太多热量,但出于安全考虑,这里选择的散热器略大。逆变器性能测试电路如图14所示。这里使用的输入电源是12V汽车电池,内阻低,放电电流大(一般在100A以上),可以为电路提供充足的输入功率。测试负载是一个普通灯泡。测试方法是改变负载大小,测量此时的输入电流、电压和输出电压。测试结果显示在电压和电流曲线图中(图15a)。可以看出,输出电压随着负载的增加而降低,灯泡的功耗随着电压的变化而变化。我们也可以通过计算找出输出电压和功率之间的关系。但实际上由于灯泡的电阻会随着两端施加的电压而变化,输出的电压和电流都不是正弦波,所以这个计算只能算是估算。以一个负载为60W的灯泡为例:假设灯泡的电阻不随电压的变化而变化。因为R灯=V2/W=2102/60=735,电压为208V时W=V2/R=2082/735=58.9W。由此可以推导出电压和功率的关系。通过测试,我们发现当输出功率约为100W时,输入电流为10A。此时,输出电压为200V。

逆变器电路图讲解,逆变器工作原理图解  第2张

逆变器电路图,帮我解释这个电路图的工作过程和原理。

逆变器是将直流电(电池、蓄电池)转换成交流电(一般为220v 50Hz正弦波或方波)的装置。我们常用的应急电源一般都是把DC电池转换成220伏交流电。简单来说,逆变器就是将直流电转化为交流电的装置。无论是在偏远的山村,野外,还是在停电的情况下,逆变器都是一个非常好的选择。常见的就是机房用的UPS电源。在突然停电的情况下,UPS可以将电池簧片的直流电转换成交流电供电脑使用,从而防止突然停电造成的数据丢失。可以不间断供电,具有一定的安全性、可靠性和稳定性。逆变器也可以和发电机配合使用,可以有效节油,降低噪音。在风能和太阳能领域,逆变器更是必不可少。小型逆变器也可以利用汽车、船舶和便携式供电设备在野外提供交流电源。本文将介绍两种简单的逆变器原理图。性能优异的家用逆变电源电路图。该设计材料易得,输出功率为150W,设计频率约为300HZ。目的是减小逆变变压器的体积、重量和输出方波。这种逆变电源可用于家用照明、电子镇流器的荧光灯、开关电源的家用电器以及停电时的其他方面。该逆变器易于制造,可将12V DC电源电压逆变为220V市电电压。该电路由BG2和BG3组成的多谐振荡器驱动,再由BG1和BG2驱动,控制BG6和BG7。振荡电路由BG5和DW组的稳压电源供电,可以使输出频率更加稳定。制作时,变压器可从双12V输出的普通市电变压器中选择。根据需要,选择合适的12V电池容量。该电路由12V电池供电。首先,倍压模块用于将电压加倍以向运算放大器供电。您可以选择ICL7660或MAX1044。运算放大器1产生50Hz正弦波作为参考信号。运算放大器2用作反相器。运算放大器3和运算放大器4用作滞后比较器。实际上,运算放大器3和开关管1构成了比例开关电源。运算放大器4和开关管2也是如此。它的开关频率不稳定。当运算放大器1的输出信号为正相时,运算放大器3和开关管工作。此时,运算放大器2的输出为负。此时,运算放大器4的正输入端的电位(常数0)总是高于负输入端的电位,因此运算放大器4的输出为常数1,开关管闭合。当运算放大器1的输出为负时,情况正好相反。这实现了两个开关的交替操作。当参考信号高于检测信号,即运算放大器3或4负输入端的信号比正输入端的信号高一个小值时,比较器输出0,开关管导通,检测信号迅速增大。当检测信号比参考信号高一个小值时,比较器输出1,开关管关断。这里需要注意的是,比较器在电路翻转时有一个正反馈过程,这是迟滞比较器的特性。例如,在参考信号低于检测信号的前提下,随着它们之间的差异接近,当它们相等时,参考信号立即比检测信号高某个值。这个“特定值”影响开关频率。它越大,频率越低。这里选0.1~0.2V。C3和C4的目的是让频率较高的开关续流电流通过,对频率较低的50Hz信号产生较大的阻抗。通过公式C5计算:50=。l一般为70H,制作时最好测量一下。所以c约为0.15。R4与R3之比应该严格等于0.5。大的时候波形失真明显,小的时候不能振动,但大不小更好。开关的最大电流为:I==25A。现有的逆变器包括方波输出和正弦波输出。方波输出逆变器具有高效率。对于电器

在移动状态下,人们不仅需要电池或蓄电池提供的低压直流电,还需要我们日常环境中不可或缺的220V交流电。逆变器可以满足我们的需求。

逆变器电路图讲解,逆变器工作原理图解  第4张

逆变器电路图

上图是一个简单的逆变电路图,其原理如下:C2是一个DC隔直电容,可以保护电路过载;R2是振荡调节电阻,大小为1-2欧姆;L1和L2是初级线圈;L3和L4是自激振荡线圈;L5是输出线圈。当电源接通时,电流受R2限制,流经L3和L4的中间抽头,然后经过首尾两个抽头到功率管的基极使功率管导通,经过L1和L2的初级线圈,产生一次电流,再经过变压器耦合,在L5形成二次电流,完成第一次振荡。在L1和L2形成电流的同时,L3和L4也通过变压器形成第二次感应电流,功率管再次导通,这样自激振荡电路就这样振荡,直到断电或管烧坏。

逆变器电路图讲解,逆变器工作原理图解  第6张

求大神帮忙理解下这个逆变电路图

首先纠正一下图中的错误:Q1和Q2的栅极要加两个电阻接地,同时要短接R6,否则无法控制Q1和Q2的关断。我们来看看SG3524的功能图:工作原理:1。振荡部分SG3524为通用脉宽调制器(PMW),属于数模混合电路。其振荡频率由第6、7脚的R1和C1决定,f1.3/R1C1,图中参数的振荡频率约为87Hz。2.驱动部分SG3524有两个三极管交替导通(关断)输出,用来驱动外部场效应管Q1和Q2轮流导通和关断。Q1和Q2是场效应晶体管,栅极相当于一个对地电容。SG3524中的三极管导通时,栅极电容充电,使场效应晶体管导通。但三极管关断时,需要对栅极电容放电才能使场效应晶体管关断,增加的R9和R10就有这个作用。3.转换输出Q1和Q2依次导通和关断,相当于在变压器T的原边输入一个交流电,在变压器的输出端得到一个交流电输出。4.控制部分由SG3524补偿端子的9个引脚控制。9针补偿端子的控制电位范围为1 ~ 3.5 V,9针补偿端子电位越高,输出占空比越小,最终交流输出电压越低。9引脚补偿端电位越低,输出占空比越高,最终交流输出电压也越高。调节Rp可以调节补偿端子9的电位。

逆变器电路图讲解,逆变器工作原理图解  第8张

版权与免责声明

本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

标签: 逆变器工作原理图解 逆变器电路图讲解

发表评论

接线图网Copyright Your WebSite.Some Rights Reserved. 备案号:桂ICP备2022002688号-2 接线图网版权所有 联系作者QQ:360888349