首页 接线图文章正文

电冰箱温控器原理及应用

接线图 2023年09月21日 20:15 236 admin
简介:本文设计该电子温控器同时具有半自动除霜功能,根据需要,可手动启动除霜加热器,到达设定温度时,自动停止除霜。

电子温控器,不仅在温度特性上与压力式温控器相同,而且根据冰箱厂家的要求可以很容易地改变温度特性,省去了压力式温控器因改变温度特性而需要组织生产新零件的程序,加快了新产品配套过程,并降低了生产成本.该电子温控器同时具有半自动除霜功能,根据需要,可手动启动除霜加热器,到达设定温度时,自动停止除霜。

工作原理

1.1电源

如图1所示,交流220V经变压器TR1降压后,再经整流、滤波输出约12V直流电压,供给压缩机继电器RC和除霜加热丝继电器RH.同时经R20,D8,C7稳压后输出约6.8V直流电压供给其余逻辑控制电路.

电冰箱温控器原理及应用  第1张

1.2温度控制

本电子温控器采用负温度系数(NTC)热敏电阻Rt1,Rt2作为感温元件,其在常温(25℃)时的电阻值约为3k8,正常工作温区大致在-60~+100℃之间,并用环氧树脂及金属外壳封装,以适当减少温度感应灵敏度.具有灵敏度高、热惯性小、低温阻值大,在一定温度范围内阻值基本呈线性变化、价格便宜等优点,可广泛用于温度控制及检测.

电冰箱温控器原理及应用  第2张

电子温控器逻辑控制原理如图2所示,电冰箱压缩机的开停由冷藏室的温度控制,Rt1(冷藏室热敏电阻)为冷藏室温度传感器,Rt1和R19组成分压器,随着冷藏室温度的变化,IC1(四电压比较器LM339)的5,6脚电压V(6)随之改变.IC1的4脚电压恒定不变.

V(4)=30/(30+20)×6.8=4.1V

IC1的7脚电压由温度调节电位器R4决定,当电位器R4调至低档(温控器暖点)时,R3,R4的等效电阻R34=0.49k8,此时,

V(7)=(1.1+0.49)/(1.1+0.49+2.4)×6.8=2.71V

当电位器R4调至高档(温控器冷点),此时,

V′(7)=1.1/(1.1+0.52+2.4)×6.8=1.86V

当电位器R4调至中间位置(温控器中点),选择R4电位器阻值呈线性变化,此时可计算出V″(7)=2.3V

由IC1的7脚电压变化值可以看出:V″(7)=0.5(V(7)+V′(7))

这样,通过合理选择热敏电阻Rt1,可使温控器停机温度随电位器位置的不同而基本呈线性变化.当电冰箱通电后,由于温度较高,Rt1阻值较小,此时因V(6)>V(7),V(6)>V(4)

故IC1输出V(1)=“0”,V(2)=“1”.

此时IC2(四或非门电路CD4001)的4脚输出V02=“1”,压缩机继电器RC吸合,电冰箱开始制冷.随着温度的降低,Rt1阻值增加,V(6)随之减小,当温度降至约4℃时,

Rt1=6.7k8,此时V(6)=4.1V

因V(4)=4.1V不变,故V(6)V(7)

此时V(1)=“0”,V(2)=“0”.

因此IC2的输出V02=“1”保持不变,电冰箱继续制冷.

随着温度的进一步降低,Rt1阻值继续增加,假设调温电位器置于中点,则当温度降低至约-20℃时,Rt1=19.6k8,此时V(6)=2.3V。

故V(6)

IC1的输出V(1)=“1”,V(2)=“0”.

此时IC2的输出V02=“0”,压缩机继电器RC释放,电冰箱停止制冷.

停止制冷后,冰箱内温度升高,Rt1阻值减小,V(6)增大,此时V(6)>V(7)=2.3V(中点位置),但V(6)

因此IC2的输出V02=“0”,保持不变,压缩机不工作.随着温度的进一步升高,当达到约+4℃时,Rt1=6.7k8,V(6)=4.1V.

故当V(6)>V(7),V(6)>V(4)时,IC1输出V(1)=“0”,V(2)=“1”.IC2输出V02再次反转为高电压,压缩机继电器RC吸合,电冰箱重新制冷.如此反复,冷藏室探头处的温度被控制在+4~-20℃之间波动。

由以上分析可以看出,温控器开机温度(C/ON,W/ON)维持在+4℃保持不变,而停机温度可随调温电位器位置不同而改变,其温度特性与调温电位器位置的关系如图3所示.此例中:

C/OFF=-24℃,W/OFF=-16℃

N/OFF=-20℃,C/ON=W/ON=+4℃

从而达到了WDF系列温控器定温复位的要求.改变电阻参数,即可改变开、停机温度特性,满足不同用户的要求.

1.3半自动除霜

半自动除霜的控制电路由IC1(四电压比较器LM339)的另外一半及其外围电路组成.对IC1进行分析:

电冰箱温控器原理及应用  第3张

正常时,即按钮AN101,AN102都未按下时:IC1的8脚电压V(8)=V(11)=5.65.6+3×6.8=4.43V.

IC1的10脚电压V(10)=6.8V.

IC1的9脚电压V(9)随除霜热敏电阻Rt2的阻值变化而变化,温度升高,Rt2阻值降低,V(9)增高;温度降低,V(9)减小.

当冷冻室温度较高,则V(9)>V(8).这时即使按下除霜按钮AN101,因为IC1的输出端V(14)=“1”,则IC2的输出V(01)′=“0”,除霜继电器RH不导通,故此时不进行除霜加热.

当冷冻室温度较低,使V(9)V(11),则IC1的输出端V(13)=“0”,则IC2的输出端V01′=“0”,保持不变,也不会进行除霜加热.

此时若按下AN101按钮,则V(10)=0

若在除霜加热过程中按下除霜停止按钮AN102,则此时,V(8)=V(11)=0.7V

松开按钮AN102后,IC2输出V01′=“0”保持不变,维持制冷状态不变.

由以上分析可知,该电子温控器实现了半自动除霜功能。

由上述分析可知,该电子温控器开机温度C/ON(W/ON)=4℃保持不变,停机温度在-16~-24℃之间变化,除霜复位温度约为6.5℃.实现了定温复位温度特性要求,并具备半自动除霜功能.其具有控温精度高,易于组织生产、配套设计快捷等特点,改变相应的电阻组合,即可很容易地改变开机、停机、除霜温度特性.

版权与免责声明

本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

标签: 温控器 电冰箱 电路图 硬件设计 原理图设计

发表评论

接线图网Copyright Your WebSite.Some Rights Reserved. 备案号:桂ICP备2022002688号-2 接线图网版权所有 联系作者QQ:360888349