首页 接线图文章正文

基于ARM7的智能拆焊、回流焊台控制系统电路模块设计

接线图 2023年01月20日 11:07 314 admin

  本文采用ARM7作为主控芯片,设计了一种智能拆焊、回流焊台控制系统,可以通过键盘操作控制,通过液晶显示屏显示其所处的状态及实时温度曲线,能对多种集成芯片进行拆和焊,适用于集成电路板的维修和加工。

  硬件电路

  主要由变压器、整流二极管、滤波电容、集成稳压器等构成,为电路提供5V、3.3V和1.8V的稳定电压

  信号检测电路模块

  主要由热电偶、运算放大器27L2、DS18B20及ARM7内部AD等组成。将温度转换成处理器可识别的数字信号。

  基于ARM7的智能拆焊、回流焊台控制系统电路模块设计  第1张

  图2 温度采集电路

  本设计的温度采集电路如图2所示,在P6口的1、3引脚接热电偶传感器的正端,2、4引脚接热电偶传感器的负端。热电偶采集到信号后经C00、 C10(高频滤波电容)将高频杂波滤除,再经27L2(低频小信号放大器)将信号放大,其中R64与R63的和与R65的比值即为U3B的放大倍数,同理,R60与R62的和与R61的比值为U3A的放大倍数。放大后再经C01和C11将高频杂波滤除,最后该信号被传到ARM7,经其内部AD转换器将模拟电压信号转换成处理器可识别的数字信号。当热电偶传感器探头部分的温度发生变化时,热电偶传感器两端的电压也按一定比例对应发生变化,然后该电压信号经 27L2放大,再经ARM内部AD将模拟量转换成数字量,ARM处理器得到数字量后便知道现在的温度。当然要想精确测温仅有热电偶测温模块是不够的。

  因为热电偶传感器有一个缺陷,它测的温度是探头与冷端之间的温度差,也就是说若仅用上述电路测温,则只有在冷端温度为零点的情况下测得的温度才是最精确的,冷端的温度与零点的温差越大,测得的温度数据越不精确。而本设计中焊台加热的同时,热电偶冷端温度会变化,从而造成了测温不准确。为了解决上述问题,特别增加了DS18B20作为补偿,在工业上称为补正系数修正法。

  ARM最小系统电路模块

  基于ARM7的智能拆焊、回流焊台控制系统电路模块设计  第2张

  图3 ARM最小系统及外部存储电路图

  本设计采用ARM7作为主控芯片,主要因其性价比高、资源丰富、工作稳定可靠。它带有32kB的片内Flash程序存储器和 8kB的片内静态RAM;128位宽度接口/加速器可实现高达70MHz工作频率;10位A/D转换器提供8路输入;2个32位定时计数器和2个16位定时计数器;多达32个通用IO口,可承受5V电压;多个串行接口,包括2个UART、2个I2C总线、SPI和具有缓冲作用和数据长度可变功能的SSP;多达13个边沿、电平触发的外部中断管脚;一个可编程的片内PLL可实现最大为70MHz的CPU操作频率等等。

  在图3ARM最小系统中,11.0592M的晶振和两个20pF电容为系统提供稳定的工作频率,然后再经ARM内部锁相环倍频使其工作频率最大可达70MHz。图中的U1为CAT1052,它为系统提供稳定的复位电路,同时为系统提供了256字节的可读写的E2PROM,使系统存储掉电不丢失数据空间。

  执行电路模块

  基于ARM7的智能拆焊、回流焊台控制系统电路模块设计  第3张

  图4 执行模块电路图

  该设计的执行电路如图4所示。其中PL端口接控制指示灯,PS1为AC220接口,PS2为灯体接口,PS3为电热盘接口,网络标号KONG1 和KONG2接ARM的两个控制引脚。当ARM测到当前温度低于温度曲线上的对应温度(即当前需要加热到的温度)时ARM处理器便让对应的控制端口置零,此时对应的光电耦合器(US1或US2)的发射端工作,使接收端导通,这时电源电压经触发二极管(DS1或DS2)和300Ω电阻后到达双向晶闸管(QS1或QS2)的触发极使其导通,这样电热盘或灯头便开始加热工作。类似的道理,当ARM的控制端给出低电平时,对应的可控硅截止,灯头或电热盘停止加热。

版权与免责声明

本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

标签: 控制电路 ARM MCU

发表评论

接线图网Copyright Your WebSite.Some Rights Reserved. 备案号:桂ICP备2022002688号-2 接线图网版权所有 联系作者QQ:360888349