首页 接线图文章正文

PID控制电路

接线图 2023年01月20日 11:08 310 admin

  

文中介绍一种由三菱FX2N实现的增量式PID控制器的设计方法。

1 控制原理

1.1 PID控制原理

PLC的PID控制器的设计是以连续系统的PID控制规律为基础,将其数字化,写成离散形式的PID控制方程,再根据离散方程进行控制程序设计。

在连续系统中,典型的PID闭环控制系统如图1所示,图中sp(t)是给定值,pv(t)为反馈量,c(t)为系统的输出量。

PID控制电路  第1张

PID控制器的输入/输出关系式为:

PID控制电路  第2张

式中:M(t)为控制器的输出;M0为输出的初始值;e(t)=sp(t)-pv(t)为误差信号;Kc为比例系数;T1为积分时间常数;TD为微分时间常数。

式(1)中等号右边前3项分别是比例、积分、微分部分,他们分别与误差、误差的积分和微分成正比。假设采样周期为Ts,系统开始运行的时刻为t=0,用矩形积分来近似精确积分,用差分近似精确微分,将式(1)离散化,第n次采样时控制器的输出为:

PID控制电路  第3张

式中:en-1为第n-1次采样时的误差值;K1为积分系数;KD为微分系数。

由式(2)可知,控制器输出的第二项是误差积累的结果,会使得超调量过大,而这些在有些工业过程中是不允许的。所以常规PID控制算法很难控制这类过程。

1.2 增量式PID控制规律

增量式PID的结构框图如图2所示:

PID控制电路  第4张

由式(2)的表达式,就可以根据“递推原理”得到Mn-1的表达式:

PID控制电路  第5张

式中:A=KC+KI+KD;B=KC+2KD;C=KD。A,B,C都是与采样周期、比例系数、积分时间常数、微分时间常数有关的常数。

由式(4)可知,增量式PID算法建立在对普通PID算法进行改进的基础之上。它克服了位置式PID对所有过去状态的依赖,计算机控制器输出的只是增量,所以误动作的时候对输出的影响比较小,必要的时候可以使用逻辑判断的方法将这种影响消除,因而不会严重影响系统的工况。由于算式中不需要对误差进行累加,控制增量△Mn的确定仅与最近的n,n-1,n-2次的采样值有关,较容易的通过加权处理而获得比较好的控制效果。

2 PLC软件设计

2.1 程序流程

图3给出了增量式PID控制算法的程序流程框图。在进行初始化时,应根据系统性能要求选定参数KC,KI,KD和采样时间TS,从而确定系数A,B,C,并设置偏差初值en-1=en-2=0。

PID控制电路  第6张

2.2 控制算法的参数确定

参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控器的比例系数、积分时间和微分时间的大小,以改善系统的动态特性和静态特性,取得最佳控制效果。本文采用临界比例度法。假设选取的控制度为1.05,根据经验选取临界比例度Kr=20%,临界振荡周期Tr=60 s,得参数整定初始值TS=O.90 s,KC=O.126,TI=30 s,TD=8 s。

基于三菱FX2NPLC的部分程序如下:

PID控制电路  第7张

3 结语

该文在分析普通PID控制算法的基础上,提出了增量式PID算法的控制原理,通过了自编程序在三菱FX2NPLC上实现了改进的PID算法。由实际模型的验证结果表明,此方法可以有效地减少系统的超调量,使其得到更好的控制效果,因此在实际的工程应用中具有较好的借鉴作用。

版权与免责声明

本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

标签: PID 控制电路

发表评论

接线图网Copyright Your WebSite.Some Rights Reserved. 备案号:桂ICP备2022002688号-2 接线图网版权所有 联系作者QQ:360888349