6 通道射频遥控器采用 CC2500 射频收发器模块和 microchip 的 PIC16F1847 微控制器设计。发射器配有 6 个轻触开关、4 个...
简易触摸开关电路图大全
在实验中,偶然发现单向可控硅(MCR100-8)控制极在不需要加正向电压的情况下,只要用手触摸一下,就会导通,因此,小编设计了一种简单的触摸开关,电路如下图所示。
触摸一下金属片开,SCR1导通,负载得电工作。触摸一下金属片关,SCR2导通,继电器J得电工作,K断开,负载失电,SCR2关断后,电容对继电器J放电,维持继电器吸合约4秒钟,故电路动作较为准确。如果将负载换为继电器,即可控制大电流工作的负载。有兴趣的朋友,不妨一试。
简易触摸开关电路图(二)
触摸式台灯电路见图,它分四档控制灯泡的亮度。通电后灯泡不亮,第一次轻轻触摸一下灯罩外壳,灯泡便发出低亮度的光,第二次触摸灯泡发出中亮度的光,第三次触摸灯泡变为全亮,第四次触摸灯泡熄灭,依次循环。此电路易出现的故障是双向可控硅97A6坏及灯罩金属外壳与电路触摸输入端子之间接触不良。
小编调试电路时,TT6061用GS6061代替,1N4004用1N4007代替,其余元件与图中相同。经验证,电路工作可靠,能实现方中所述功能。但双向可控硅易损坏,建议读者制作时在可控硅两端并联一电阻电容串联所组成的保护电路。
简易触摸开关电路图(三)
这里介绍一个简单实用的触摸延时开关电路,它具有简单、廉价、性能好等特点,很适合爱好者自行制作。电路原理:
延迟开关电路见图D1--D1,SCR组成开关的主回路,BG1,BG2等组成开关的控制回路。
平时,BG1,BG2均处于截止状态,SCR阻断,电灯H不亮。此时220V交流电经D1--D4整流、R3和DW使LED发光,用作夜间指示开关位置。这时流过H的电流仅2mA左右,不足使电灯H发光。需要开灯时,只有用手指摸一下电极片M,因人体泄露电流经R5,R6注入BG2的基极,BG2迅速导通。BG2集电极为低电平,BG1也随之导通,因此有触发电流经BG1注入SCR的控制极使SCR开通,电灯H就通电发光。在BG2导通瞬间,C1通过BG2的c-e极间被并联在DW的两端,因此被迅速充上约12V左右的电压。电灯点亮后,人手离开M,虽然BG2恢复截止状态但由于C1所存储的电荷通过R1向BG1发射结放电,使BG1依然保持导通状态,所以电灯继续发亮。当C1电荷基本放完后,BG1恢复截止态,SCR失去触发电流,当交流电过零时,SCR关断,电灯熄灭。
开关延迟时间主要由电阻R1,R2和电容C1的数值决定,下面提供一组实验数据供大家参考。如要进一步增大延时时间,可加大C1容量。除上述主要因素外,BG1的放大倍数以及SCR的触发灵敏度对延时时间也有影响。
注意:本电路与市电直接相接,在调试过程中要十分注意,以免触电。有条件的朋友,可以先用隔离变压器把市电隔离,再进行调试。电阻R6的引线要短,一头直接焊在电极片M的背面,另一头焊上一跟软线,再接到印板上的R5。采用两个高阻值电阻的目的是为了确保使用者的绝对安全。
简易触摸开关电路图(四) 电阻桥触摸开关
图1所示的电阻桥触摸开关采用了LM339,LM339是一种四电压比较器(内部有4个完全相同的电压比较器),该电路只应用了其中的一个,工作电压范围宽达2—32V。用手触摸靠得很近但不接触的双金属片时,LM339第2脚输出低电平信号,使发光二极管LED1导通发光。
图2所示的电阻桥触摸开关和图1的不同之处,主要是采用了运算放大器LF353N,而不是电压比较器。LF353N是双运算放大器,该电路也只应用了其中的一个。触摸双金属片时,LF353N的第1脚输出低电平信号,使发光二极管LED1导通发光。
图3和图2不同之处就是触摸双金属片时,LF353N的第1脚输出高电平电压,使发光二极管LED1导通发光。
图4是专为业余无线电CW电报应用所设计的电键控制电路。
简易触摸开关电路图(五) 单金属片触摸开关
图5所示的电路只使用了一片触摸金属片,电路中采用了2只四二输入端(内部有四个完全相同的,具有两个输入端)施密特触发器4093(如CD4093、TC4093等等)。通常IC2-a的输出端第3脚处于低电平,发光二极管LED1不能发光,当触摸金属片时,该输出端即变为高电平,使LED1导通发光。图6与图5类似,使用的元件更少,直接输出电键控制电压。
简易触摸开关电路图(六)
当触摸M电极时,人体感应的杂波信号经电容C4耦合进电路,由VD5整流后,IC的2脚得到负电压,3脚输出一高电平,继电器Κ吸合,其触点闭合接通台灯电源,台灯亮;当触摸N电极时,人体感应的杂波信号经VD6整流,于是6脚得到一个正电压,3脚输出低电平,继电器Κ释放,其触点断开台灯电源电路,台灯就不亮了。
555触摸台灯电路:
相关文章
发表评论