首页 接线图文章正文

分析模拟电路设计的电路灵敏度

接线图 2024年01月28日 08:53 200 admin
    电路灵敏度的定义 电路灵敏度
    的一个简单但不精确的定义 是特定电路特性随着特定元件值的变化而变化的程度。这可以是任何电路特性:放大器增益;总线接收器输入阻抗;RF端口电压驻波比;或数字栅极阈值电压。在本文中,我们使用模拟滤波器来探索灵敏度分析,因为此信息通常对于良好的滤波器设计至关重要。我们将看到将灵敏度分析扩展到其他类型的电路是相当容易的。

    公式 1 是电路灵敏度的数学定义:

分析模拟电路设计的电路灵敏度  第1张

    (1)
    其中S 是灵敏度,X 是变化的分量,Y 是我们希望在X 变化时评估的电路特性。
    这个等式的中间部分具有直观意义。它是因变量变化的百分比 Δ y / y相对于自变量变化的百分比 Δ x / x。当x的变化趋于零时取极限来 评估该比率的微小变化。
    该方程非常通用,可以用来评估任何电路参数相对于任何电路元件值变化的变化。
    尾注 1、2 和 3 对灵敏度进行了详细处理,并推导了我们将使用的许多方程。

    简单电路示例

分析模拟电路设计的电路灵敏度  第2张

    考虑图 1 所示的简单电路——分压器

    公式 2 是直流传递函数:

分析模拟电路设计的电路灵敏度  第3张

    (2)

    使用公式 1 计算 DC 传递函数对R 1 和R 2的灵敏度:

分析模拟电路设计的电路灵敏度  第4张

    (3)

分析模拟电路设计的电路灵敏度  第5张

    (4)
    这些方程是什么意思?回想一下,灵敏度是因变量(在本例中为 DC 传递函数)相对于自变量( 公式 3 中的R 1和 公式 4 中的R 2 )变化的百分比。
    这些灵敏度方程除了符号外都是相同的。在公式 3 中,对R 1的敏感度 为负。正如负号所暗示的,当R 1 增加时,传递函数减小。当R 2增加时,传递函数也会增加,这是预期的,因为等式 4(对R 2 的 敏感性)为正。
    当R 1 远大于R 2时,方程简化为 – R 1 / R 1 = –1 且R 1 / R 1 = 1。这意味着每变化 1%,传递函数应变化近 1%在这些条件下的任一电阻器中。
    以R 1 = 1000* R 2的情况为例。这里的传递函数是 1/1001 = 999e–3。如果R 2 加倍,则传输量变为 2/1002 = 1.996e–3,这是之前值的 1.998 倍,几乎翻倍。
    类似地,如果R 1 加倍,传递函数将减小近两倍。将R 1 加倍会导致传递函数为 1/2001 = 0.4998e–3,这是之前值的 0.498 倍,几乎少了两倍。
    另一个极端是,当R 2 远大于R 1时,导致灵敏度方程在R 1 = 0 且R 2 = ∞ 时减小至零。对于可以实现的值,敏感性将接近于零。因此,当任一电阻器变化时,传递函数变化很小。
    其中R 2 = 1000* R 1,传递函数为 1000/1001 = 0.999。如果R 2 加倍,则变为 2000/2001 = 0.9995,对于元件值的 100% 变化,传递函数仅变化 0.05%。
    类似地,如果我们将R 1 加倍,则传递函数变为 1000/1002 = 0.998,对于元件值的 100% 变化,传递函数仅变化 0.1%。
    如果R 1 = R 2,则传递函数为 0.5,灵敏度为 –0.5 和 0.5。您预计任一电阻每变化 1%,传递函数就会变化 0.5%。让我们将R 2增加 1%。现在传递函数变为 1/2.01 = 0.4975,减少了 0.5%。同样,将R 1增加 1% 会导致传递函数为 1.01/2.01 = 5.025,即增加 0.5%。
版权与免责声明

本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

标签: 放大器 总线 滤波器 分压器 电阻器

发表评论

接线图网Copyright Your WebSite.Some Rights Reserved. 备案号:桂ICP备2022002688号-2 接线图网版权所有 联系作者QQ:360888349