首页 接线图文章正文

一文读懂SiC功率半导体器件-电路图讲解-电子技术方案

接线图 2024年04月22日 18:04 90 admin

近年来,SiC功率器件结构设计和制造工艺日趋完善,已经接近其材料特性决定的理论极限,依靠Si器件继续完善来提高装置与系统性能的潜力十分有限。本文首先介绍了SiC功率半导体器件技术发展现状及市场前景,其次阐述了SiC功率器件发展中存在的问题,最后介绍了SiC功率半导体器件的突破。

SiC功率半导体器件技术发展现状

1、碳化硅功率二极管

碳化硅功率二极管有三种类型:肖特基二极管(SBD)、PiN二极管和结势垒控制肖特基二极管(JBS)。由于存在肖特基势垒,SBD具有较低的结势垒高度。因此,SBD具有低正向电压的优势。SiC SBD的出现将SBD的应用范围从250 V提高到了1200 V。同时,其高温特性好,从室温到由管壳限定的175℃,反向漏电流几乎没有增加。在3 kV以上的整流器应用领域,SiC PiN和SiC JBS二极管由于比Si整流器具有更高的击穿电压、更快的开关速度以及更小的体积和更轻的重量而备受关注。

 

2、单极型功率晶体管,碳化硅功率MOSFET器件

硅功率MOSFET器件具有理想的栅极电阻、高速的开关性能、低导通电阻和高稳定性。在300V以下的功率器件领域,是首选的器件。有文献报道已成功研制出阻断电压10 kV的SiC MOSFET。研究人员认为,碳化硅MOSFET器件在3kV~5 kV领域将占据优势地位。尽管遇到了不少困难,具有较大的电压电流能力的碳化硅MOSFET器件的研发还是取得了显著进展。

 

另外,有报道介绍,碳化硅MOSFET栅氧层的可靠性已得到明显提高。在350℃条件下有良好的可靠性。这些研究结果表明栅氧层将有希望不再是碳化硅MOSFET的一个显著的问题。

 

3、碳化硅绝缘栅双极晶体管(SiC BJT、SiC IGBT)和碳化硅晶闸管(SiC Thyristor)

最近报道了阻断电压12kV的碳化硅P型IGBT器件,并具有良好的正向电流能力。碳化硅IGBT器件的导通电阻可以与单极的碳化硅功率器件相比。与Si双极型晶体管相比,SiC双极型晶体管具有低20~50倍的开关损耗以及更低的导通压降。SiC BJT主要分为外延发射极和离子注入发射极BJT,典型的电流增益在10-50之间。

 

关于碳化硅晶闸管,有报道介绍了1平方厘米的晶闸管芯片,阻断电压5kV,在室温下电流100A(电压4.1V),开启和关断时间在几十到几百纳秒。

 

  一文读懂SiC功率半导体器件-电路图讲解-电子技术方案  第1张

 

SiC功率器件市场前景广阔

2014 年全球 Si 功率器件市场规模约 150 亿美元, 其中 SiC 功率器件为 1.2 亿美元,不到 Si 功率器件的 1%。 SiC 器件 2014 年总市场规模约为 1.33 亿美元,至 2020 年市场规模可达 4.36 亿美元,年复合增长率为 22%。

 

预测,至 2025 年:碳化硅 MOSFET 市场规模将会超越 3 亿美元,成为仅次于碳化硅肖特基二极体的第二大碳化硅离散功率元件;SiC FETs 与 BJTs 产品获得市场信赖,但多应用于专业或小众产品,规模远低于 SiC MOSFET 市场;结合 SiC 二极管与 Si IGBT 所形成的混合式 SiC 功率模组, 2015年该产品市场销售额约为 3,800 万美元,预计 2025 年销售额将会突破 10 亿美元。

 

一文读懂SiC功率半导体器件-电路图讲解-电子技术方案  第2张

 

SiC功率器件发展中存在的问题

1、在商业化市场方面:

(1)昂贵的SiC单晶材料。由于Cree公司技术性垄断,一片高质量的4英寸SiC单晶片的售价约5000美元,然而相应的4英寸Si片售价仅为7美元。如此昂贵的SiC单晶片已经严重阻碍了SiC器件的发展。

(2)Cree公司的技术垄断。由于Cree公司在世界各国申请了许多专利,严重制约了其他公司在SiC领域的发展。

 

2、在技术方面:

(1)SiC单晶材料虽然在导致SiC功率半导体性能和可靠性下降的致命缺陷微管密度降低和消除方面近年来取得很大进展,但位错缺陷等其他缺陷对元件特性造成的影响仍未解决。

(2)SiC器件可靠性问题。SiC MOSFET器件目前存在两个主要技术难点没有完全突破:低反型层沟道迁移率和高温、高电场下栅氧可靠性。与Si MOSFET相比,体现不出SiC MOSFET的优势。

(3)高温大功率SiC器件封装问题。

 

 一文读懂SiC功率半导体器件-电路图讲解-电子技术方案  第3张

 

功率半导体的SiC之路期待突破

电力电子器件的发展历史大致可以分为三个大阶段:硅晶闸管(可控硅)、IGBT(绝缘栅双极型晶体管)和刚显露头角的碳化硅(SiC)系列大功率半导体器件。晶闸管发展已有近六十年历史,技术成熟也得到广泛应用,可以借鉴它的历史来预测碳化硅功率器件。想当初IGBT兴起时,与晶闸管参数指标相差极大,晶闸管已能做到2-3KV、2-3KA时,IGBT仅仅是电流过百、电压过千。在短短的二十几年间,IGBT从第一代迅速发展到第六代,电压和电流已与晶闸管并驾齐驱,显示出IGBT优越性能。

 

晶闸管能干的IGBT全能干、IGBT能干的晶闸管干不了,在相当大的一片应用领域里IGBT因其不可替代的优越性能独居鳌头。但是晶闸管仍以其比较高的性价比守住了自己的大片阵地。碳化硅材料技术的进展已使部分碳化硅功率器件用于实际成为可能。但还有许多关键的技术问题需要解决。晶闸管电流从小到大、电压从低到高经历了数十年的风风雨雨,IGBT也有这样的一个不凡的过程。可见SiC功率器件的发展也会有一个漫长的过程。


-电子元器件采购网(www、oneyac、com)是本土元器件目录分销商,采用“小批量、现货、样品”销售模式,致力于满足客户多型号、高质量、快速交付的采购需求。自建高效智能仓储,拥有自营库存超50,000种,提供一站式正品现货采购、个性化解决方案、选项替代等多元化服务。 (本文来源网络整理,目的是传播有用的信息和知识,如有侵权,可联系管理员删除)

一、FPGA对DC-DC精度的要求不断提升

FPGA厂商不断采用更先进的工艺来降低器件功耗,提高性能,同时FPGA对供电电源的精度要求也越加苛刻,电压必须维持在非常严格的容限内,如果供电电压范围超出了规范的要求,就有会影响到FPGA的可靠性,甚至导致FPGA失效。

 

无论是Intel (Altera)FPGA还是Xilinx FPGA均在数据手册中明确提出了电源精度要求,其中要求最高的是内核和高速收发器的供电。举例来看,Intel公司的Cyclone V、Cyclone 10 GX、Arria10、Stratix 10的电源精度要求在±30mV以内

 

Arria10的core和transceiver数据手册上的供电要求(±30mV):

 

一文读懂SiC功率半导体器件-电路图讲解-电子技术方案  第4张

 

一文读懂SiC功率半导体器件-电路图讲解-电子技术方案  第5张

 

Stratix10的core和transceiver数据手册上的供电要求(±30mV):

 

一文读懂SiC功率半导体器件-电路图讲解-电子技术方案  第6张


如果Stratix10需要支持26.6G transceiver时,收发器供电精度要求 ±20mV以内

 

一文读懂SiC功率半导体器件-电路图讲解-电子技术方案  第7张

 

Xilinx公司的Artix 7、Kintex7、Virtex 7等器件电源精度要求也是在±30mV以内,KU+、VU+器件要求电源精度必须达到±22mV以内。

 

Kintek Ultrascale+的core和transceiver数据手册上的供电要求(±22mV):

 

一文读懂SiC功率半导体器件-电路图讲解-电子技术方案  第8张

 

一文读懂SiC功率半导体器件-电路图讲解-电子技术方案  第9张

 

由此可见,新一代FPGA的供电精度都在±20-30mv左右,已经是单板中对电源精度要求最为苛刻的器件之一了。

 

由于输出精度都是理论计算值,并没有考虑单板PCB布线和其他外部设备引入的干扰和误差,因此实际设计产品时,电源输出精度不但必须符合数据手册中的要求,还必须预留一定的余量,通常设计中,我们还会保留50%-100%余量,以保证系统长期可靠工作。

 

二、电源的稳态直流精度及计算方法

供电电源的稳态直流精度主要取决于两个因素:电压调整精度和输出电压纹波。这里有一个误区,很多工程师只通过DC-DC数据手册上的电压输出精度来判断器件是否符合要求,其实这是不正确的。 首先很多DC-DC需要外部反馈电阻来决定最终的输出电压,数据手册上的电压调整精度是指芯片本身的输出精度,并没有计算反馈电路引入的偏差。其次,器件数据手册上的电压输出精度并不包含输出电压纹波,必须将两者叠加计算才能得到正确的直流稳态精度。

 

正确的电源稳态直流精度的计算公式如下:

•      电源直流稳态精度 =器件输出精度(这里要求全温度,全负载时的精度,很多器件手册只给出典型值,因此要小心)+ ½ 纹波 + 外部反馈电阻精度引入的误差

 

下面我们来计算几个常见的30A DC-DC电源芯片的电源直流稳态精度

1. TI公司的TPS53355, 输出1%精度,输出纹波20mv,需要使用反馈电阻,假设使用1%精度的反馈电阻,输出0.9V@30A情况下:

电源直流稳态精度=9mV(器件输出精度)+10mV(1/2 纹波)+6mV(1%反馈电阻精度引入的误差)=25mV

 

2. LTM4630, 输出1.5%精度,输出纹波15mv,需要使用反馈电阻,假设使用1%精度的反馈电阻,输出0.9V@30A情况下:

电源直流稳态精度=13.5mV(器件输出精度)+7.5mV(1/2 纹波)+3mV(1%反馈电阻精度引入的误差)=24mV

 

3.   Intel公司的EM2130L02QI 30A电源模块,输出0.5%精度,输出纹波7mv,不需要外部反馈电路,输出0.9V@30A 情况下:

电源直流稳态精度=4.5mV(器件输出精度)+3.5mV(1/2 纹波)=8mV

 

可见,TPS53355和LTM4630的理论输出精度为24-25mv,对于大部分FPGA的30mv精度要求来说,只是在理论上满足,用户必须将PCB布线和其他外部设备引入的干扰控制在5mv以内,这个余量非常小,很难符合可靠性设计原则。而对于KU+,VU+或者需要支持26G收发器的Stratix10等器件,理论上TPS53355和LTM4630输出精度都超出了器件容限,无法满足这些新一代FPGA器件对电源的要求。

 

而Intel公司的EM2130模块是Intel公司专门针对FPGA等大规模芯片设计的电源模块产品,输出精度为0.5%,不需要任何外部反馈电阻,纹波只有7mv左右,最终电源直流稳态精度达到了惊人的8mV,有充分的设计余量可以满足当前任何FPGA的对电源精度的苛刻要求。

 

三、高精度电源对减低FPGA功耗的作用

除了电源精度影响整个系统的稳定性和可靠性,更高精度的电源还可以帮助我们降低系统功耗。

 

我们举一个例子,一个FPGA推荐的典型工作电压为0.85V,最高工作电压为0.88V,最低工作电压为0.82V, 假设供电DC-DC实际稳态直流精度是±30mV ,那么DC-DC必须正好工作在0.85V,如果电压更低,就会低于FPGA对电压下限的要求。

 

而Intel EM21xx系列电源模块的稳态直流精度理论值只有±8mV,考虑设计余量,我们使用±15mV作为实际工作精度, 那么在保证器件最低工作电压0.82V的情况下,输出电压可以设置在0.835V,而不是0.85V,根据功率计算公式P=U2 /R, 在30A情况下,可以降低0.765W功耗。

 

     一文读懂SiC功率半导体器件-电路图讲解-电子技术方案  第10张

 

四、总结

电源是保证FPGA系统可靠的重要因素,随着FPGA对电压精度要求不断提高,大部分传统电源芯片或模块已经难以跟上FPGA芯片对精度要求。 Intel公司针对新一代FPGA的需求,专门设计了EM21xx系列数字电源模块,输出电流从20A到40A(即将推出60A模块),小体积,高效率,简单易用,精度完全满足所有新一代FPGA器件对电源的苛刻要求,并可以预留足够余量,确保电源系统的可靠性。


-电子元器件采购网(www、oneyac、com)是本土元器件目录分销商,采用“小批量、现货、样品”销售模式,致力于满足客户多型号、高质量、快速交付的采购需求。自建高效智能仓储,拥有自营库存超50,000种,提供一站式正品现货采购、个性化解决方案、选项替代等多元化服务。 (本文来源网络整理,目的是传播有用的信息和知识,如有侵权,可联系管理员删除)

版权与免责声明

本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

发表评论

接线图网Copyright Your WebSite.Some Rights Reserved. 备案号:桂ICP备2022002688号-2 接线图网版权所有 联系作者QQ:360888349