安森美半导体灵活、小巧、低功耗的USB Type-C方案加速系统设计-电子技术方案|电路图讲
随着技术的演进和人们对充电功率和数据传输速率的需求不断提高,USB Type-C应运而生。USB Type-C是下一代USB连接器、端口和电缆的标准,支持双向电源和正反逆插,提供更高的充电功率和更高的数据传输速率,为用户带来更高的性能和更多的便利,也为设计人员和制造商提供简洁性,将越来越广泛地用于智能手机、平板电脑、扩展坞、适配器等终端设备。IHS预计2019年基于 USB Type-C的设备出货量将超过20亿,为40%的USB总市场容量(TAM)。据ABI Research,到2020年约一半的智能手机和93%的笔记本电脑将含USB Type C互联。 针对这最新的市场趋势,安森美半导体为市场提供完整的Type-C和USB-PD方案,包括USB Type-C和USB-PD控制器、超高速开关、端口保护方案、转接驱动器等。这些方案支持双角色端口 (DRP)、下行端口 (DFP) 和上行端口 (UFP),具有业界更低功耗、更小尺寸(比基于MCU的方案小达95%),提供更简化和灵活的优势。
图1:安森美半导体的主要Type-C和PD产品 USB标准及连接器的演进 USB的出现可远追溯到1996年,当时推出的USB 1.0传输速度为1.5 Mbps。然后2000年推出的USB 2.0传输速度提高到480Mbps,提供最大2.5 W (0.5 A,5 V)的功率,随后USB 3.0的数据传输速度提高到5Gbps,最大功率提高至4.5 W (0.9 A,5 V)。而最新的第二代USB 3.1将数据传输速度提升至10Gbps. USB Type-C是新型的连接器。USB标准的原始设计是USB Type A,为扁平的矩形。Type A端口大多用于主机设备,如台式电脑、笔记本电脑、游戏机和媒体播放器。USB micro B连接器较小,主要见于外围设备。现在行业标准正在向USB Type-C发展,支持USB 3.1和USB-PD,提供单个连接器/电缆,免去多个电缆和连接器的麻烦。USB Type-C端口最大功率可达15 W (3 A,5 V)。对于USB 3.1,若采用支持USB-PD的Type-C连接器,最高功率可达100 W (5 A,20 V)。
图2:随着技术的演进,功率快速增长
USB Type-C主要应用 在智能手机、平板电脑等应用中,USB Type-C主要作为充电接口和用于超高速数据的传输,当用作充电接口时,支持USB-PD和快充,通常仅一个插槽。安森美半导体针对此类应用的Type-C及USB-PD产品主要有支持PD的可编程的Type-C 控制器FUSB302B、符合USB 3.1 Gen-II的Type-C超高速开关FUSB340 、支持TCPC的Type-C PD端口控制器FUSB307B、Type-C或USB2.0 D+/D-高速端口保护开关FSUSB242等。 在用于计算机时,USB Type-C实现多个双角色端口和用于超高速数据的传输,并用作宽范围的电源输入/输出端口,安森美半导体用于计算机的Type-C产品主要有FUSB340 、FUSB307B、FUSB252等。 对于AC-DC适配器,行业设计正带动增加的功率密度,需要支持可编程(PPS)。安森美半导体主要提供准谐振PWM控制器FAN604和具有SRC默认状态的100W USB Type-C 可编程的控制器FUSB302BT。
如何降低USB 3.x的插入损耗 在支持USB 3.x的Type-C环境中可实现超高速数据传输,在这环境下的大多数应用都需要一个转接驱动器来减小插入损耗,如图像传感器、汽车信息娱乐系统、平板电脑、游戏系统、手机、虚拟实境(VR)设备、有源电缆、打印机/扫描仪、高清显示器、基座/集线器等。 电缆插入损耗可能会因不同的供应商、电缆量规、类型而有所不同,而接口对电缆损耗性能有很大影响。FR4损耗因线长、所采用的介质和布线而有所不同。但电缆和FR4的损耗都取决于采用的数据速率。例如,9英寸FR4以5 Gbps传输时约有3.9 db 损耗,但以10 Gbps传输时有 6.9 db损耗。如果用24英寸FR4以5 Gbps传输时的损耗从3.9 db增至9.6 db,以10 Gbps传输时的损耗从6.9 db增至16.8 db。因此,这增加了的插入损耗,需要转接驱动器。 第1代和第2代USB 3.1能提供更高的数据速率,但会带来在USB有源电缆设计中减轻信号完整性损失的挑战。有源电缆的长度和性能将推动对转接驱动器和高质量互联的需要,必须识别其速度能力,且尺寸和低功耗是关键。 性能出色的转接驱动器可减少码间串扰,避免因不想要的信号失真影响传输,还有助于符合USB3.x眼图高度和总抖动规范。 安森美半导体的单通道转接驱动器如NB7NPQ701M、NB7VPQ701M和双通道转接驱动器NB7NPQ702M、NB7VPQ702M支持USB 3.1应用,同时支持第一代USB 3.1 (5Gbps) 和第二代USB 3.1 (10Gbps)数据率,扩展信号距离达36英寸FR4 或 5m电缆 5Gbps、达10英寸FR4 10Gbps。其单通道转接驱动器与同类器件相比,眼高增加20%,抖动降低20%。
10Gbps USB3.1超高速开关 FUSB340是10Gbps USB3.1超高速开关,典型带宽达10 GHz,具有1.5 V至5 V的宽VDD范围,提供2KV HBM ESD保护,符合Jedec标准,有源功耗低于12 uA,关断功耗低于1 uA,在2.5GHz时的插入损耗仅-1 dB,采用18引脚的TMLP小型封装(2.0mm x 2.8mm x 0.4mm),是适用于手机、平板电脑、笔记本电脑、超便携应用所需的可正反逆插的Type-C USB 3.1连接器的小型分立方案。 与竞争方案相比,FUSB340具有更宽的电源电压范围、更快的数据速率、更高的带宽、低插入损耗、更低的差分插入损耗(-28 dB)、更低的差分串扰(-44 dB)、更低的ICC关断值(1 uA)和ICC有源值(0.03 mA)、更少引脚数、更小封装(比竞争方案至少小40%)和更薄高度。
USB 3.1 Type C连接器保护方案 在保护方面,安森美半导体采用两个ESD8704器件保护超高速线路,8个ESD7471保护低速和辅助线路。ESD8704具有超低电容、低ESD钳位电压,接触及空气放电± 30 kV,满足IEC61000-4-2 Level 4,采用2.5 x 1.0mm uDFN封装。而ESD7471提供双向瞬态电压抑制,接触及空气放电± 20 kV,满足IEC61000-4-2 Level 4,具有1.0 x 0.6 mm2的小外形。
总结 安森美半导体提供灵活和易于集成的USB Type-C和USB-PD控制器方案支持最新的USB Type-C标准,易于设置和配置,支持固件/提供驱动器用于通用嵌入式控制平台,功耗仅为竞争方案的1/20,尺寸减少达95%,并针对USB3.x的超高速应用,提供转接驱动器、超高速开关和保护方案等全系列方,这些都是USB3.x设计人员的福音,此外,安森美半导体的USB解决方案网页也使用户轻松获得关键应用的优化方案,加速他们的系统设计。
-电子元器件采购网(www、oneyac、com)是本土元器件目录分销商,采用“小批量、现货、样品”销售模式,致力于满足客户多型号、高质量、快速交付的采购需求。自建高效智能仓储,拥有自营库存超50,000种,提供一站式正品现货采购、个性化解决方案、选项替代等多元化服务。 (本文来源网络整理,目的是传播有用的信息和知识,如有侵权,可联系管理员删除)
开关电源 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通讯设备,视听产品,安防监控,LED灯带,电脑机箱,数码产品和仪器类等领域。
肖特基二极管 肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B表面电子浓度逐渐降低,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。
典型的肖特基整流管的内部电路结构是以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。阳极使用钼或铝等材料制成阻档层。用二氧化硅(SiO2)来消除边缘区域的电场,提高管子的耐压值。N型基片具有很小的通态电阻,其掺杂浓度较H-层要高100%倍。在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。通过调整结构参数,N型基片和阳极金属之间便形成肖特基势垒,如图所示。当在肖特基势垒两端加上正向偏压(阳极金属接电源正极,N型基片接电源负极)时,肖特基势垒层变窄,其内阻变小;反之,若在肖特基势垒两端加上反向偏压时,肖特基势垒层则变宽,其内阻变大。
综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。 肖特基二极管是一种热载流子二极管。肖特基二极管也被称为肖特基势垒二极管是一种低功耗、超高速半导体器件,肖特基二极管被广泛应用于变频器、开关电源、驱动器等电路,作为低压、高频、大电流整流二极管、保护二极管、续流二极管等使用,肖特基二极管在微波通信等电路中作整流二极管、小信号检波二极管使用。那么武汉办公家具 肖特基二极管作用是什么呢?下面就是小编对于肖特基二极管具有介绍。
肖特基二极管-原理 肖特基二极管是由贵金属金、铝、银、铂等A为正极,以N型半导体B为负极,然后利用二者接触面之间上形成的势垒一种具有整流特性制成的金属半导体器件。肖特基二极管由于N型半导体中存在大量电子,而贵金属中仅有少量自由电子,肖特基二极管中的电子便从浓度高的B向浓度低A中扩散。肖特基二极管金属A中没有空穴,不存在空穴自A向B扩散运动。随着肖特基二极管中电子不断从B扩散到A,B的表面电子浓度逐渐降低,表面电中性破坏,于是形成势垒。
肖特基二极管-优点 肖特基二极管具有开关频率高、正向压降低等优点,但肖特基二极管的反向击穿电压比较低,一般不会高于60V,最高仅约为100V,以致于限制了肖特基二极管的应用范围。在变压器次级用100V以上的高频整流二极管、开关电源和功率因数校正电路中的功率开关器件续流二极管、RCD缓冲器电路中用600V~1.2kV之间的高速二极管、PFC升压用600V二极管等情况下时,只有使用快速恢复外延二极管和超快速恢复二极管。现在的肖特基二极管已取得了突破性的进展,150V和200V高压已经上市,使用新型材料制作的超过1kV的肖特基二极管也研制成功。
肖特基二极管-作用 肖特基二极管又被称为肖特基势垒二极管(简称 SBD),是一种低功耗、超高速半导体器件。肖特基二极管最显著的特点是反向恢复时间极短,正向导通压降仅为0.4V左右。肖特基二极管多用作高频、大电流整流二极管、低压、续流二极管、保护二极管、小信号检波二极管、微波通信等电路中作整流二极管等处使用。肖特基二极管在通信电源、变频器等中比较常见。肖特基二极管在双极型晶体管的开关电路里面,通过在连接二极管来箝位。
-电子元器件采购网(www、oneyac、com)是本土元器件目录分销商,采用“小批量、现货、样品”销售模式,致力于满足客户多型号、高质量、快速交付的采购需求。自建高效智能仓储,拥有自营库存超50,000种,提供一站式正品现货采购、个性化解决方案、选项替代等多元化服务。 (本文来源网络整理,目的是传播有用的信息和知识,如有侵权,可联系管理员删除)
相关文章
发表评论