集成电压/电流驱动的灵活4~20mA环路供电压力传感器变送器_电工基础电路图讲解
电路功能与优势
图1所示电路是一款鲁棒且灵活的环路供电电流变送器,可将压力传感器的差分电压输出转换为4 mA至20 mA电流输出。
该设计针对各种桥式电压或电流驱动型压力传感器而优化,仅使用了4个有源器件,总不可调整误差低于1%。环路电源电压范围为12 V至36 V。
该电路的输入具有ESD保护功能,并且可提供高于供电轨的电压保护,是工业应用的理想选择。
图1. 鲁棒的环路供电压力传感器信号调理电路,具有4 mA至20 mA输出
(显示为传感器电压驱动模式),原理示意图:未显示所有连接和去耦
电路描述
该设计提供完整的4 mA至20 mA变送器压力传感器检测解决方案,整个电路由环路供电。有三个重要的电路级:传感器激励驱动、传感器输出放大器和电压-电流转换器。
电路所需总电流为1.82 mA(最大值),如表1所示。因此,可在不超过4 mA最大可用环路电流的情况下使用电桥驱动电流高达2 mA的压力传感器。
传感器激励驱动
需使用电压驱动或电流驱动,具体取决于所选压力传感器。该电路使用一半的ADA4091-2(U2A),并通过开关S1选择不同配置,支持两种选项之一。开关S1提供其中一种驱动选择。
激励:电压驱动配置
图2显示S1的电压驱动配置,S1位于PCB上标有VOLTAGE DRIVE处(完整电路布局和原理图参见CN0289设计支持包:http://www、analog、com/CN0289-DesignSupport)。
图2. 传感器电压驱动配置(RBRIDGE=5kΩ、VDRIVE=10V
电压驱动电路通常配置为10 V电桥驱动电压。在该模式下,允许的最小电桥电阻为:
对于低于5 kΩ的电桥电阻而言,可通过移除R6并使用缓冲器配置,将驱动电压降低至5 V。
通过下式选择合适的R6,便可获得驱动电压的其他值:
其中:
请注意,环路电压VLOOP应至少比电桥驱动电压高0.2 V,以便让U2A具有足够的裕量。
激励:电流驱动配置
通过将S1移动至PCB上标有CURRENT DRIVE的位置,便可将电路切换至图3所示的电流驱动配置。
图3. 传感器电流驱动配置(RBRIDGE = 3 kΩ)
在电流驱动模式中,必须保留最大允许的2 mA电桥驱动电流。电路配置为R4 = 2.49 kΩ且IDRIVE = 2 mA。使用下式选择 R4值,可获得较低的 IDRIVE值:
通过下式可计算驱动电压VDRIVE:
U2A电源需要0.2 V裕量,因此:
在图3中,RBRIDGE = 3 kΩ、IDRIVE = 2 mA、 VDRIVE = 11 V、VLOOP ≥ 11.2 V。
该电路选择运算放大器ADA4091-2,因为它具有低功耗(每个放大器250 μA)、低失调电压(250 μV)以及轨到轨输入输出特性。
电桥输出仪表放大器以及增益和失调电阻选择
电桥输出采用带宽为39.6 kHz的共模滤波器(4.02 kΩ、1 nF) 以及带宽为2 kHz的差模滤波器(8.04 kΩ、10 nF)滤波。
AD8226是理想的仪表放大器选择,因为它具有低增益误差 (0.1%,B级)、低失调(G = 50时58μV,B级;G = 50时112μV, A级)、出色的增益非线性度(75 ppm = 0.0075%)以及轨到轨输出特性。
AD8226仪表放大器以系数50 V至5 V放大100 mV FS信号,增益设置电阻R3 = 1.008 kΩ。增益G和R3的关系如下:
其中G = 50,R3 = 1008 Ω。
输出零值环路电流ILO = 4 mA:
由于R10与R8之比为100:1
合并最后两式可得:
ILO= 4 mA时,AD8226输出为0 V;失调电阻R12可计算如下:
若VOUT= 5.00 V,则输出环路电流ILH = 20 mA, 因此:
流经R12的电流为:
流经R9的电流为:
R9值可通过下式计算:
实际使用时,R3、R12和R9的计算值将不作为标准值提供,因此电路所用的实际值将产生固定误差。这些误差可通过下式计算。
电阻R3、R9和R12产生的增益、失调和总误差测量值,以 %FSR表示(其中,FSR = 16 mA):
零电平输出(4 mA)时的总误差不受增益误差影响。
而满量程输出(20 mA)时的总误差可计算如下:
满量程误差 = 增益误差 + 失调误差
实际电路中,必须选择最接近EIA标准的0.1%电阻,因此可得前文所述的固定增益和失调误差。可使用两个0.1%电阻组合,以便更接近计算值。例如,下列0.1%电阻的串联组合非常接近计算值:
R3 = 1 kΩ + 8.06 Ω = 1008.06 Ω (计算值 = 1008 Ω)
R9 = 30.9 kΩ + 655 Ω = 31.555k Ω (计算值 = 31.56 kΩ)
R12 = 124 kΩ + 2.26 kΩ = 126.26 Ω (计算值 = 126.25 Ω)
这些组合的误差计算如下:
失调误差 = −0.008% FSR
增益误差 = +0.010% FSR
满量程误差 =
然而在某些情况下,电阻供应商甚至连标准0.1%电阻值都无法提供,因此需进行替换。
例如,EVAL-CN0289-EB1Z 评估板提供的电阻值如下:
R3 = 1000 Ω(计算值 = 1008 Ω)
R9 = 31.6 kΩ(计算值 = 31.56 kΩ)
R12 = 124 kΩ(计算值 = 126.25 kΩ)
根据评估板提供的数值,电阻值引起的误差可计算如下:
失调误差 = +0.45% FSR
增益误差 = +0.66% FSR
满量程误差 = +1.11% FSR
基准电压
使用ADR025 V基准电压设置电桥的驱动电压或电流,以及设置4 mA零电平失调。其初始精度为0.1%(A级)、0.06% (B级),并且具有10 μV p-p电压噪声。此外,它将采用高达 36 V的电源电压工作,且仅消耗1 mA(最大值),是环路供电应用的理想选择。
基准电压
通过强制数值大小为信号分量(I9) 和失调分量(I12)。 之和的电流流过R10,即可产生4 mA至20 mA输出电流。电流I10 = I9 + I12)在R10两端产生电压,该电压通过U2B和Q1施加于感测电阻R10。流经R8的电流是流经R10电流的100倍。因此,环路电流ILOOP可由下式算得:
选择的R8 (10 Ω)和R10 (1 kΩ)数值要能够轻松得到0.1%容差。
为了让电路正常工作,电路电流I ICIRCUIT
受U2B输出控制的双极性NPN晶体管产生环路电流,并且增益应当至少为300,以便最大程度减少线性误差。其击穿电压应至少为50 V。
输出晶体管Q1是一个50 V NPN功率晶体管,25°C时功耗为 1.1 W。在20 mA输出电流输入至0 Ω环路负载电阻且 VCC电源为36 V时,电路具有最差情况下的功耗。这些条件下的 Q1功耗为0.68 W。
驱动电路板的电源电压VLOOP取决于环路电源VLOOP_SUPPLY环路负载R7和环路电流 ILOOP. 这些数值的关系如下:
若要使电路正常工作,电源电压VLOOP必须大于7 V,以便为 ADR02基准电压源提供充分的裕量。
因此,
对于20 mA最大环路电流以及R7 = 250 Ω
最小环路电源电压同样取决于电桥的驱动电路配置。在VDRIVE= 10 V的电压驱动模式下,电源电压VLOOP必须大于 10.2 V,这样U2A才能保持足够的裕量(见图2)。
在电流驱动模式下,电源电压VLOOP必须大于11.2 V,这样 U2A才能保持足够的裕量(见图3)。
环路电源电压限值为36 V(最大值)。
有源元件的误差分析
表2和表3分别表示系统中因有源元件造成的AD8226 和 ADR02的A、B级最大误差及rss误差。请注意,运算放大器ADA4091-2仅在一种等级水平下可用。
总电路精度
对电阻容差导致的总误差的合理近似推算是假设每个关键电阻对总误差贡献都相等。5个关键电阻是R3、R8、R9、R10 和R12。0.1%电阻导致的最差情况下的容差可造成0.5%总电阻误差最大值。若假定rss误差,则总rss误差为0.1√5 = 0.224%。
由于有源器件(A级)造成的误差,需要在之前的最差情况误差之上增加0.5%的最差情况电阻容差误差:
失调误差 = 0.29% +0.5% = 0.79%
增益误差 = 0.15% + 0.5% = 0.65%
满量程误差 = 0.44% + 0.5% = 0.94%
这些误差假定选用理想电阻,因此误差仅来源于其容差。
虽然电路允许具有1%或更低的总误差,若要求更佳的精度,则电路需具备失调和增益调节能力。针对4 mA输出和零电平输入,可通过调整R12来校准失调,然后针对满量程100 mV输入,通过改变R9调节满量程。这两项调节是相互独立的;假定首先进行失调校准。
电路的实际误差数据见图4。总输出误差(%FSR)通过将理想输出电流与测量输出电流的差除以FSR (16 mA),然后将计算结果乘以100即可算出。
请注意,0 mV与1 mV输入之间的误差由AD8226输出级饱和电压导致,且电路在负载条件下的误差范围为20 mV至 100 mV。所有轨到轨输出级均受限于其通过饱和电压(双极性输出)或导通电阻(CMOS输出)达到供电轨的能力。
若输出饱和电压引起的误差导致某些问题的产生,则来自电桥的输入信号可通过在+5 V基准电压与电桥输出的其中一侧之间连接一个适当的电阻而进行偏置。
图4. 输出电流(%FSR)的总误差与电桥输出的关系(3 kΩ电桥,24 V环路电源)
电路功能与优势
该电路提供一款完整的、完全隔离、模拟输出通道,适合需要标准4mA至20 mA HART®1-兼容型电流输出和单极性/双极性输出电压范围的可编程逻辑控制器(PLC)和分布式控制系统(DCS)模块。它为通道间隔离PLC/DCS输出模块或其他所有需要完全隔离式模拟输出的工业应用提供了灵活的构建块。电路在模拟输出端还提供了外部保护功能。
AD5422 16位数模转换器(DAC)可通过软件配置,提供全部必须的电流和电压输出。
AD5700-1是业界功耗最低、尺寸最小的 HART兼容型IC调制解调器,与 AD5422配合使用,组成完整的HART兼容型4 mA至20 mA解决方案。 AD5700-1集成内部精密振荡器,可额外节省空间,尤其在通道间隔离应用中。
PLC/DCS 解决方案必须与本地系统控制器隔离,使之免受接地环路影响,同时确保不受外部事件影响。传统解决方案利用分立IC提供电源和数字隔离。当需要多通道隔离时,分立电源解决方案的成本和空间会变成一个大大的缺点。基于光隔离器的解决方案通常具有合理的输出调节,但需要额外的外部元件,因而会使电路板面积增大。电源模块常常体积庞大,而且输出调节可能不佳。图1中的电路使用 ADuM347x系列隔离器和电源调节电路,以及相应的反馈隔离。使用外部变压器将功率传输到隔离栅的另一端。
ADuM3482为 AD5700-1提供UART信号隔离。
ADP2441, 是36 V降压DC-DC稳压器,采用工业标准24 V电源,具有宽输入电压容差。它可将电压降为5 V,为所有控制器侧电路供电。该电路还在24 V电源端集成了标准外部保护,同时还可提供+36 V至?28 V的直流过压保护。
图1.功能框图(原理示意图:未显示所有连接和去耦)
更多详情点击此链接
相关文章
发表评论