高频AD8331 VGA与 ADC AD9215互连_电工基础电路图讲解
电路功能与优势
在将具有宽动态范围的模拟信号转换为数字格式,而ADC分辨率不足以捕捉全部有用信息时,可变增益放大器(VGA)可以发挥重要作用。例如,具有2 V峰峰值输入范围的10位转换器的LSB大小为2 ÷ 1024,即稍低于2 mV。VGA放大幅度小于最低分辨率的输入信号,并衰减大信号,以免ADC饱和。信号强度在数微伏至数伏范围内的超声接收机,以及几乎所有接收机都会用到的中频(IF)放大器,就是这类应用的例子。对于直流或低频模拟信号,分辨率最高达24位的Σ-Δ型ADC经济实惠、款式多样,但采样频率通常限制在数百 kHz。现有的先进ADC的分辨率会随着采样频率的提高而降低,这使得利用标准ADC对高频、低振幅信号进行精确数字化处理极其困难。可变增益放大器可以方便地解决这一问题,图1所示为VGA驱动ADC的典型应用。
图1:AD8331 VGA与AD9215 ADC互连(原理示意图,所有连接/去耦均未显示)
AD8331/AD8332/AD8334分别是单通道/双通道/四通道、超低噪声、线性dB可变增益放大器(VGA),针对超声系统进行了优化,可以用作低噪声可变增益元件,工作频率最高达120 MHz。
各通道内置一个超低噪声前置放大器(LNA)、一个48 dB增益范围的X-AMP® VGA以及一个具有可调输出限制功能的可选增益后置放大器。LNA增益为19 dB,具有单端输入和差分输出。LNA输入阻抗可以利用一个电阻来调节,以便与信号源相匹配,且不影响噪声性能。
VGA的48 dB增益范围使这些器件适合各种不同的应用。带宽在整个增益范围内可保持出色的一致性。对于40 mV至1 V范围内的控制电压,增益控制接口可提供精确的50 dB/V线性dB调整。通过工厂调整可确保器件间及通道间具有出色的增益匹配特性。
电路描述
VGA和现代ADC的功能已远远超越早期ADC设计所用的传统运算放大器。在本例所用的VGA中,增益由外部控制。针对10位或12位转换器映射的增益值可通过引脚选择,低噪声级的阻抗则可通过一个串联R-C网络调整,以获得各种不同的阻抗值。借助简单的引脚搭接便可使用高速转换器产品。
图1所示电路展现了典型VGA与ADC的互连情况。对于本例,AD8331 VGA与AD9215 ADC在频率范围和差分接口匹配方面兼容。为简明起见,图中未显示电源去耦。
AD8331内置一个低噪声前置放大器,后接一个差分衰减器和增益级。此VGA仅需5 V单电源供电。ADC的低噪声3 V电源可由与5 V电源相连的LDO提供,例如ADP3339。该VGA的差分输出用于驱动具有差分输入的ADC,其输入范围为1 V峰峰值至约4.5 V峰峰值。AD9215的输入范围可以设置在1 V峰峰值差分与2 V峰峰值差分之间。对于本电路,ADC输入范围设置为2 V峰峰值差分。
与大多数单电源器件一样,AD8331需要一个电压为供电电压中间值的内部基准电压源,用于一对镜像放大器,它可在输出端(折合到共模电压CMV)提供相等但极性相反的信号。关于此功能的更多信息,请参考AD8331数据手册 。VGA的引脚11 (VCM)既可以作为输入,也可以作为输出。作为输出时,VCM电路可以在引脚11上进行去耦,或者可以通过一个电压源驱动该引脚,以修改共模电压的值,从而适应具有不同输入范围的各种ADC。如果保持浮地,VCM电压将为电源电压的一半,这对于交流耦合应用是最佳值。
引脚12 (CLMP)将输出摆幅箝位在ADC差分输入的限制内,从而避免出现可能会严重影响转换器的过驱问题。利用一个简单的电阻控制箝位幅度。如果CLMP引脚上没有任何连接,则箝位电压为以2.5 V共模电压为中心的差分4.5V峰峰值。
测试波形选择1 MHz正弦波,利用 ADC Analyzer™软件恢复的波形如图2所示。采样频率为65 MSPS,对应于AD9215的65 MSPS版本。LNA输入信号为70 mV峰峰值,经过外部低通和高通滤波器处理,可滤除信号发生器的杂散。VGA增益为29 dB,可将信号放大到大约ADC满量程输入电压的一半。VGA与ADC之间的高通和低通滤波组合可衰减50 kHz以下的低频噪声(33 Ω和100 nF可产生48 kHz的低频截止频率),以及100 MHz以上的频率(42 pF和33 Ω可产生114 MHz的高频截止频率)。
图2:重建的满量程2 V峰峰值1 MHz正弦波,采样速率为65 MSPS
通过减小LNA输入端以及LNA与VGA输入端之间的串联电容值,可以进一步实现高通滤波。
如果VOH和VOL上的PCB走线杂散电容约超过25 pF,则可能需要一个输出去耦网络,它由100 Ω固定电阻与AD8331各输出端串联插入的一个铁氧体磁珠并联组成。否则,便不需要这一网络。
大部分现代ADC都可以通过引脚接入内部基准电压源。AD9215的内部基准电压为1 V,外部电阻使共模输入电压偏置3 V电源电压的一半。
数据捕捉板与笔记本电脑接口。ADC Analyzer软件可启动转换器,并提供波形或FFT显示。关于AD9215配置的详细信息,请参考AD9215数据手册。
图3是该测试设置的简化框图。评估板上装有一个20引脚、双排接头,它与转换器接口板上的连接器一半相结合。评估板由标准笔记本电脑上运行的ADC Analyzer软件进行控制。
图3:测试配置框图
本电路必须构建在具有较大面积接地层的多层电路板上。为实现最佳性能,必须采用适当的布局、接地和去耦技术(请参考 教程MT-031——“实现数据转换器的接地并解开AGND和DGND的谜团”,以及 教程MT-101 ——“去耦技术”)。
常见变化
其它单通道、10位ADC包括AD9214(适合较低输入频率)或AD9411(适合较高采样速度应用)。
电路功能与优势
图1所示电路是基于超高动态范围差分放大器驱动器ADL5565和11位、200 MSPS四通道中频接收机AD6657A的65 MHz带宽接收机前端。
四阶巴特沃兹抗混叠滤波器基于放大器和中频接收机的性能和接口要求而优化。由滤波器网络和其他阻性元件引起的总插入损耗仅为2.0 dB。总体电路带宽为65 MHz,低通滤波器在190 MHz下具有1 dB带宽,在210 MHz下具有3 dB带宽。通带平坦度为1dB。
该电路专为处理以140 MHz为中心、采样速率为184.32 MSPS的65 MHz带宽中频信号而优化。在65 MHz频段内采用140 MHz模拟输入测得的SNR和SFDR分别为70.1 dBFS和80.9 dBc。
图1:四通道中频接收机前端的单通道(原理示意图:未显示所有连接和去耦)增益、损耗和信号电平10 MHz下测得值
电路描述
图1所示电路接受单端输入并使用宽带宽(3 GHz) M/A-COM ECT1-1-13M 1:1变压器将其转换为差分信号。 ADL5565 6.0 GHz差分放大器采用6 dB增益工作时具有200 Ω的差分输入阻抗,采用12 dB增益工作时为100 Ω,采用15.5 dB增益工作时为67 Ω。
ADL5565是 AD6657A的理想驱动器,通过低通滤波器可在ADC中实现全差分架构,提供良好的高频共模抑制,同时将二阶失真产物降至最低。 ADL5565根据输入连接提供6 dB、12 dB和15.5 dB的增益。此电路中,使用6 dB增益补偿滤波器网络和变压器(约2.1 dB)的插入损耗,从而提供4.0 dB的总信号增益。增益还有助于将放大器的噪声影响降至最低。
AD6657A是一款四通道中频接收机,其中将每个ADC输出从内部连接到数字噪声整形再量化器(NSR)模块。集成NSR电路能够提高奈奎斯特带宽内较小频段的信噪比(SNR)性能。
可以对NSR模块进行编程,以提供采样速率22%、33%或36%的带宽。对于本电路笔记内采用的数据,采样速率为184.32 MSPS,且以下NSR设置适用:
NSR带宽 = 36%
调谐字(TW) = 12
左频带边缘 = 11.06 MHz(输入 = 173.26 MHz)
中心频率 = 44.24 MHz(输入 = 140.08 MHz)
右频带边缘 = 77.41 MHz(输入 = 106.91 MHz)
NSR模块的详细工作原理请参见 AD6657A数据手册。
抗混叠滤波器是采用标准滤波器设计程序(本例中是Agilent ADS)设计的四阶巴特沃兹低通滤波器。选择巴特沃兹滤波器是因为它具有平坦响应。四阶滤波器产生1.03的交流噪声带宽比
为了实现最佳性能,ADL5565应载入至少200 Ω的净差分负载。20 Ω串联电阻将滤波器电容与放大器输出隔离开,当加入下游阻抗时可产生249 Ω的净负载阻抗。
15 Ω电阻与ADC输入串联,将内部开关瞬变与滤波器和放大器隔离开。110 Ω电阻与ADC并联,用于降低ADC的输入阻抗,使性能更具可预测性。
AD6657A的差分输入阻抗与2.2 pF并联,约为2.4 kΩ。对于该类型的开关电容输入ADC,实部与虚部与输入频率成函数关系;详细分析请参见应用笔记AN-742。
四阶巴特沃兹滤波器采用50 Ω的源阻抗、209 Ω的负载阻抗和190 MHz的3 dB带宽设计而成。滤波器的最终电路值如图1所示。从滤波器程序生成的值如图2所示。为滤波器无源元件选择的值是最接近程序生成值的标准值。ADC的内部 2.2 pF电容用作滤波器设计的最终分流电容。
从本设计可以看出,最佳性能的获得有时可以是迭代过程。滤波器程序设计值非常接近最终值,但由于存在一些板寄生电容,滤波器最终值略有不同。图3显示了滤波器的最终设计值。
图2. 四阶差分巴特沃兹滤波器的滤波器程序初始设计,ZS = 50 Ω,ZL = 209 Ω,FC = 190
图3. 四阶差分巴特沃兹滤波器的最终设计值,ZS = 50 Ω,ZL = 209 Ω,FC = 190 MHz
表1总结了系统的测量性能,其中3 dB带宽为210 MHz。网络的总插入损耗约为2 dB。图4所示为最终滤波器电路的带宽响应,图5所示为SNR和SFDR性能。
表1. 电路的测定性能
图4. 通带平坦度性能与输入频率的关系
图5. SNR/SFDR性能与输入频率的关系
滤波器和接口设计程序
本节介绍放大器/ADC与滤波器接口设计的常用方法。为了实现最佳性能(带宽、SNR、SFDR等),放大器和ADC应对一般电路形成某些设计限制:
放大器应参考数据手册推荐的正确直流负载,以获得最佳性能。
放大器与滤波器的负载间必须使用正确数量的串联电阻。这是为了防止通带内的不良信号尖峰。
ADC的输入应通过外部并联电阻降低,并使用正确串联电阻将ADC与滤波器隔离开。此串联电阻也会减少信号尖峰。
此设计方法倾向于利用大多数高速ADC的相对较高输入阻抗和驱动源的相对较低阻抗,将滤波器的插入损耗降至最低。
设计程序的详情请参见电路笔记 CN-0227 和 CN-0238。
电路优化技术和权衡
本接口电路内的参数具有高互动性;因此优化电路的所有关键规格(带宽、带宽平坦度、SNR、SFDR、增益等)几乎不可能。不过,通过变更RA和RKB,可以最大程度地减少通常发生于带宽响应内的信号尖峰。
ADC输入端的串联电阻(RKB)应选择为尽量减少任何残余电荷注入(从ADC内部采样电容)造成的失真。增加此电阻也倾向减少带内的信号尖峰。
不过,增加RKB会增加信号衰减,因此放大器必须驱动更大信号才能填充ADC的输入范围。
优化通带平坦度的另一方法是略微变更滤波器分流电容。
ADC输入端接电阻(2RTADC)通常应选择为使净ADC输入阻抗介于200 Ω和400 Ω之间。降低该电阻可减少ADC输入电容的效应并稳定滤波器设计,但会增加电路的插入损耗。提高该值也会减少信号尖峰。
上述因素的权衡可能有些困难。本设计中,每个参数权重相等;因此所选值代表了所有设计特征的接口性能。某些设计中,可根据系统要求选择不同值,以优化SFDR、SNR或输入驱动电平。
本设计中的SFDR性能取决于两个因素:放大器和ADC接口元件值,如图1所示。表1和图5所示的最终SFDR性能数字是在优化滤波器设计后获得的,考虑了用于滤波器设计的板寄生电容和非理想元件。
该特定设计中可以权衡的另一因素是ADC满量程设置。对于采用本设计获得的数据,满量程ADC差分输入电压设置为1.75 V p-p,它可以优化SFDR。将满量程输入范围更改为2.0 V p-p可稍稍改善SNR,但SFDR性能会略微降低。沿相反方向将满量程输入范围更改为1.5 V p-p可稍稍改善SFDR,但SNR性能会略微降低。
请注意,本设计中的信号与0.1 µF电容进行交流耦合,以阻挡放大器、其端接电阻和ADC输入之间的共模电压。共模电压的详情请参见AD6657A数据手册。
无源元件和PCB寄生考虑因素
该电路或任何高速电路的性能都高度依赖于适当的PCB布局,包括但不限于电源旁路、受控阻抗线路(如需要)、元件布局、信号布线以及电源层和接地层。高速ADC和放大器PCB布局的详情请参见教程MT-031和MT-101。
低寄生表面贴装电容、电感和电阻应用于滤波器内的无源元件。所选电感来自Coilcraft 0603CS系列。滤波器所用表面贴装电容的稳定性和精度是5%、C0G、0402型。
系统的完整文档请参见CN-0259设计支持包(CN0259-DesignSupport)。
常见变化
针对需要更少带宽和更低功耗的应用,可使用ADL5562差分放大器。 ADL5562的带宽为3.3 GHz。如需更低的功耗和带宽,还可使用 ADA4950-1。该器件的带宽为1 GHz,仅使用10 mA的电流。
相关文章
发表评论