基于电荷泵改进型CMOS模拟开关电路-电子技术方案|电路图讲解
当前VLSI技术不断向深亚微米及纳米级发展,模拟开关是模拟电路中的一个十分重要的原件,由于其较低的导通电阻,极佳的开关特性以及微小封装的特性,受到人们的广泛关注。模拟开关导通电阻的大小直接影响开关的性能,低导通电阻不仅可以降低信号损耗而且可以提高开关速度。要减小开关导通电阻,可以通过采用大宽长比的器件和提高栅源电压的方法,可是调节器件的物理尺寸不可避免地会带来一些不必要的寄生效应,比如增大器件的宽度会增加器件面积进而增加栅电容,脉冲控制信号会通过电容耦合到模拟开关的输入和输出,在每个开关周期其充放电过程中会消耗更多的电流,时间常数t=RC,充放电时间取决于负载电阻和电容,使得开关的速度变慢,同时增大宽长比也增加了器件的成本。当前减小导通电阻的普遍办法是提高开关管的栅电压。
1传统模拟开关原理及栅增压原理
图1传统模拟开关
在MOS技术中,传统的开关实现就是一个PMOS管和一个NMOS管并联,如图1所示,A和B两端分别为传送信号的输入、输出端,两个管子的栅极分别由极性相反的信号来控制。由于MOS管的源极和漏极可以互换,因此这个电路的输入、输出端也可以互换,它可以控制信息双向流通,就像一个双向开关。工作过程:当控制信号S=1时,PMOS管和NMOS管均导通,传输门接通,信号畅行无阻;当控制信号S=0时,PMOS管和NMOS管均截止,传输门关闭,开关断开。当一管的导通电阻减小,则另一管的导通电阻就增加。由于两管是并联运行,可近似地认为开关的导通电阻近似为一常数。这是CMOS传输门的优点。
1.1模拟开关分析
CMOS开关的导通电阻为:
导通电阻将不随输入信号改变而改变,可等效为一个恒定阻值的电阻,如式(3),不会引起模拟信号的失真,由于导通电阻是由两个电阻并联,所以阻值较单管开关小得多,使得开关速率又得到提高。从式(3)中可以知道MOS开关为了能提高速度和精度,需要抬高NMOS管的栅电压。增加栅电压最直接的办法就是提高电路的电源低压,但是从低电压系统角度来说这增加了成本,因此需要加一个电源电路,最好的办法是芯片内部产生一个电压来增加栅电压。
1.2栅增压原理
栅增压原理是依靠电荷泵的工作原理:先贮存能量,然后以受控方式释放能量,以获得所需的输出电压。本文中所用的电容式电荷泵采用电容器来贮存能量,通过电容对电荷的积累,电容A端接时钟信号Clk,当A点电位为0时,B点电位为Vdd;当A点电位为Vdd时,由于电容两端的电压不会突变,理想情况下,此时B点电位被抬升为2Vdd,因为电荷泵的有效开环输出电阻存在,使得实际情况B点电位低于2Vdd.
图2栅增压基本电路
-电子元器件采购网(www、oneyac、com)是本土元器件目录分销商,采用“小批量、现货、样品”销售模式,致力于满足客户多型号、高质量、快速交付的采购需求。自建高效智能仓储,拥有自营库存超50,000种,提供一站式正品现货采购、个性化解决方案、选项替代等多元化服务。 (本文来源网络整理,目的是传播有用的信息和知识,如有侵权,可联系管理员删除)
运算放大器是作为最通用的模拟器件,广泛用于信号变换调理、ADC采样前端、电源电路等场合中。虽然运放外围电路简单,不过在使用过程中还是有很多需要注意的地方。
1、注意输入电压是否超限
图1是ADI的OP07数据表中的输入电气特性的一部分,可以看到在电源电压±15V的条件下,输入电压的范围是±13.5V,如果输入电压超出范围,那么运放就会工作不正常,出现一些意料不到的情况。
而有一些运放标注的不是输入电压范围,而是共模输入电压范围,如图1-2是TI的TLC2272数据表的一部分,在单电源+5V的条件下,共模输入范围是0-3.5V.其实由于运放正常工作时,同相端和反相端输入电压基本是一致的(虚短虚断),所以“输入电压范围”与“共模输入电压范围”都是一样的意思。
图1-1
图1-2
2、不要在运放输出直接并接电容
在直流信号放大电路中,有时候为了降低噪声,直接在运放输出并接去耦电容(如图2-1)。虽然放大的是直流信号,但是这样做是很不安全的。当有一个阶跃信号输入或者上电瞬间,运放输出电流会比较大,而且电容会改变环路的相位特性,导致电路自激振荡,这是我们不愿意看到的。
正确的去耦电容应该要组成RC电路,就是在运放的输出端先串入一个电阻,然后再并接去耦电容(如图2-2)。这样做可以大大削减运放输出瞬间电流,也不会影响环路的相位特性,可以避免振荡。
3、不要在放大电路反馈回路并接电容
如图3-1所示,同样是一个用于直流信号放大的电路,为了去耦,不小心把电容并接到了反馈回路,反馈信号的相位发生了改变,很容易就会发生振荡。所以,在放大电路中,反馈回路不能加入任何影响信号相位的电路。由此延伸至稳压电源电路,如图3-2,并接在反馈脚的C3是错误的。为了降低纹波,可以把C3与R1并联,适当增大纹波的负反馈作用,抑制输出纹波。
4、注意运放的输出摆幅
任何运放都不可能是理想运放,输出电压都不可能达到电源电压,一般基于MOS的运放都是轨对轨运放,在空载情况下输出可以达到电源电压,但是输出都会带一定的负载,负载越大,输出降落越多。基于三极管的运放输出幅度的相对值更小,有的运放输出幅度比电源电压要小2~6V,比如NE5532.图4-1就是TI的TLC2272在+5V供电的输出特性,它属于轨对轨运放,如果用该器件作为ADC采样的前级放大(如图4-2),单电源+5V供电,那么当输入接近0V的时候,输入和输出变得非线性的了。解决的方法是引入负电源,比如在4脚加入-1V的负电源,这样在整个输入范围内,输出与输入都是线性的了。
图4-1
5、注意反馈回路的Layout
反馈回路的元器件必须要靠近运放,而且PCB走线要尽量短,同时要尽量避开数字信号、晶振等干扰源。反馈回路的布局布线不合理,则会容易引入噪声,严重会导致自激振荡。
-电子元器件采购网(www、oneyac、com)是本土元器件目录分销商,采用“小批量、现货、样品”销售模式,致力于满足客户多型号、高质量、快速交付的采购需求。自建高效智能仓储,拥有自营库存超50,000种,提供一站式正品现货采购、个性化解决方案、选项替代等多元化服务。 (本文来源网络整理,目的是传播有用的信息和知识,如有侵权,可联系管理员删除)
相关文章
发表评论