首页 接线图文章正文

基于IGBT的固态脉冲调制器设计与实现-电子技术方案|电路图讲解

接线图 2024年04月24日 17:36 162 admin

在雷达发射机脉冲调制器中,广泛采用的是电真空管作为开关管。这种结构的脉冲调制器具有配套技术复杂、造价高、使用寿命短等缺点,尤其是其不适用于大功率、高重复频率等工作场合的缺陷,使其已经远远不能满足现代雷达的复杂信号处理的需求。

 

随着电力电子技术的快速发展,新型功率开关器件IGBT(绝缘栅双极晶体管)迅速占领了市场,满足了人们把大功率、超高频率开关元件实现固态化的期望,有着完全取代电真空管的趋势。这也为在雷达发射机脉冲调制器中采用IGBT作为开关管以替代电真空管奠定了理论和实践基础。

 

1 脉冲调制器的结构

根据脉冲调制器的任务,它基本由下列3部分组成:电源部分、能量储存部分、脉冲形成部分。其结构如图1所示。

 

  基于IGBT的固态脉冲调制器设计与实现-电子技术方案|电路图讲解  第1张

 

电源部分的作用是把初级电源(例如市电)变换成符合要求的直流电源。直流电源包括低压电源和高压电源两种,低压电源供给调制脉冲预处理电路使用,高压电源供给调制脉冲形成电路使用。

 

能量储存部分的作用是为了降低对于电源部分的高峰值功率要求。因为脉冲调制器是在短促的脉冲期间给射频发生器提能量的,而在较长的脉冲间歇期间停止工作,因此为了有效地利用电源功率,可以采用储能元件在脉冲间歇期间把电源送来的能量储存起来,等到脉冲期间再把储存的能量放出,交给射频发生器。常用的储能元件有电容器和人工线(或称仿真线)。

 

脉冲形成部分是利用一个开关,控制储能元件对负载(射频发生器)放电,以提供电压、功率、脉冲宽度及脉冲波形等都满足要求的视频脉冲。常用的开关元件有真空三、四极管、氢闸流管、半导体开关元件(可控硅元件)和具有非线性电感的磁开关等。

 

真空管的通断可由栅极电压控制,通断利索,这种开关称为刚性开关,对应的调制器称为刚性调制器。氢闸流管、半导体开关元件和具有非线性电感的磁开关则只能控制其导通,而不能控制其关断,这种开关元件称为软性开关,对应的调制器称为软性调制器。

 

2 开关器件的比较

对传统的电真空器件(氢闸流管)和现代电力电子器件IGBT的电气性能进行比较。

 

2.1 传统电真空管器件

 

以真空三、四极管为调制开关的刚性调制器适应能力强,能适应各种波形、重复频率的要求,但这也是以体积、重量、结构和成本为代价的。为弥补自身不足以适应各种工作需要,刚性调制器又分为多种类型,但都避免不了其功率小、效率低的缺陷。

 

以氢闸流管为开关元件的软性调制器虽能克服刚性调制器的不足,但自身的缺陷也很突出,主要表现为:1)脉冲波形顶部抖动、后沿拖长;2)对负载阻抗的适应性差;3)对波形的适应性也差。

 

可见软性调制器只能适应于精度要求不高、波形要求不严格的大功率雷达中。并且不管是刚性还是软性调制器,其结构的复杂都使其可靠性降低,并且维修难度大。

 

2.2 现代电力电子器件

开关元件的固态化是发展的大趋势,尤其是电力电子器件在由传统型向现代型转变以后,许多新兴的器件迅速应用于这种电力转换领域。上世纪九十年代才现身市 场的绝缘栅双极晶体管IGBT已成为现代电力电子器件发展的领头军,型号齐全,已经出现了由IGBT组成的功能完善的智能化功率模块IPM。

 

IGBT:Insulated Gate Bipolar Transistor绝缘栅双极晶体管是一种工作原理复杂的集成半导体器件。在结构上,集成了所有半导体器件的基本结构。如二极管、BJT、结型场效应管 JFET、MOSFET、SCR。工艺上利用MOS工艺进行大面积功率集成,单元胞的体积越来越小,单元胞的数量越来越多。IGBT经过20年的发展,技 术越来越成熟,功能越来越强大。从原来的平面栅型到沟槽型,又发展到非穿通型,直至现在的电场截至型.达到了6 000 V/600 A,通态压降1.3 V,开关频率达到纳秒级。

 

IGBT在大量产品中的良好表现,证明其是一种良好的功率开关器件。其主要优点表现在开关频率高、承载功率大、通态压降低、du/dt和di/dt耐量高、动态性能高、反向恢复快等,这些性能特点使其特别适应于在高频、大功率电路中出任开关器件的重任。


-电子元器件采购网(www、oneyac、com)是本土元器件目录分销商,采用“小批量、现货、样品”销售模式,致力于满足客户多型号、高质量、快速交付的采购需求。自建高效智能仓储,拥有自营库存超50,000种,提供一站式正品现货采购、个性化解决方案、选项替代等多元化服务。 (本文来源网络整理,目的是传播有用的信息和知识,如有侵权,可联系管理员删除)

任何非同步直流/直流转换器都需要一个所谓的续流二极管。为了优化方案的整体效率,通常倾向于选择低正向电压的肖特基管。很多设计都采用一个转换器设计(网络) 工具推荐的二极管。这并非总是二极管的最优选择。更何况,如果设计工具不考虑热性能和漏电流之间的动态变化,则极有可能发生实际性能有别于设计工具的分析 或模拟出的结果。本文将探讨一些在选择正确的二极管时应仔细考虑的典型参数,以及如何应用这些参数来快速确定选型的正确与否。

 

检查损耗

图1给出了非同步直流/直流降压转换器的基本框图。D1是所需的肖特基管。左侧是开关S1闭合时(时间为T1)的电流情况,右侧是开关S1打开时(时间为T2)的电流情况。

 

  基于IGBT的固态脉冲调制器设计与实现-电子技术方案|电路图讲解  第2张

  图1:非同步直流/直流降压转换器基本框图。

 

当时间为T2时,输出电流(Iout)流经D1。所产生的损耗与D1的正向电压(Vfw)和输出电流直接相关。PT2等于Iout*Vfw。显然,我们希望尽可能降低以控制损耗,减少发热。

 

T1期间,D1处于阻断状态。唯一的电流是反向电流。此电流相对较弱,并且主要由阻断电压或输入电压Vin决定。T1阶段二极管产生的功耗,称为PT1,大致等于Ir*Vin。

 

对于任何肖特基二极管,在设计时都存在一个取舍。即此设备要么针对低Vf进行优化,要么针对低Ir进行优化。因此,如果选择低Vf,则Ir就较高,反之 亦然。在实际应用设计时,重要的是不仅要观察Vf或Ir的值,还要分析它们在实际操作中会产生什么结果。Vf和Ir都会随温度变化而改变。当温度升 高,Vf会降低,在二极管升温的同时降低了热扩散。但非常不幸的是,Ir会随着二极管温度升高而增加。所以,二极管温度越高,漏电流就越多,内部功耗就越 多,这样就使得二极管温度更高,从而再次增加漏电流,如此循环。

 

如果坚持采用基本的非同步直流/直流转换器的设计案例,不妨做一个基本 分析以确定二极管内部功耗和由此导致的设备温度。直流/直流转换器的运行占空比与电压输入输出的比值直接相关(DC=Vout/Vin)。电压输入和输出 的比值越低,T2的时间就越长,PT2对整个二极管的功耗影响也就越大。反之亦然,T1越长(或和的比值越高),PT2对总功耗的影响就越小,PT1的作 用就越大。

 

以两个直流/直流转换器为例,两个都是24V输入电压,但其中一个是18V输出电压而另一个是5V。使用Vin和Vout的比值计算得到占空比,并且使用数据表中的Vf和Ir值计算出二极管内总功率的损失。然后根据总功耗计算出由此导致的二极管温度,并查找在此温度下的Vf和Ir实际数值。最后根据新的二极管温度重新算出内部功耗。这个迭代过程可以重复多次以提高精确度,但如果只想大致表明Vf和Ir的不同取舍所产生的影响,单次迭代就足够了。

 

设备温度可使用描述热性质的基本热方程计算,和用于描述电压,电流,电阻的计算并无不同。一旦知道了设备的内部功耗(Ptot),就可以用它乘以结点到 环境的热阻(Rtja),计算出设备结点处的温度变化。把它加上环境温度,就得到了该设备在此功耗和环境温度下的最终结点温度。

 

图2表 示的是分析结果。此例中的计算使用了PMEG3050BEP(优化为低Ir)和PMEG3050EP(优化为低Vf)二极管。输出电流范围为1~3A。这 里比较了低Vf型和低Ir型二极管的温度。初始温度假定为25℃。图中同时给出了Ta(第一次传递温度计算)和Tb(第二次传递)。左侧是5V输出的直流 /直流转换器的结果,右侧是18V输出的直流/直流转换器(两者的输入电压都是24V)。计算时假定Rtja采用基本的200K/W,然后根据占空比进行 调节。肖特基二极管的数据表给出了瞬时热效应曲线,允许设计者根据具体的脉冲占空比(短暂脉冲电流的热效应要优于连续电流)决定实际的热阻。请注意,任何 应用中的二极管总热阻取决于很多因素,布局是其中较为重要的一个。

 

  基于IGBT的固态脉冲调制器设计与实现-电子技术方案|电路图讲解  第3张

  图2:两个直流/直流转换器的分析结果。

 

在图2中可以发现,在上述两种情况中,在第二次温度传递Tb时,低Vf的二极管开始变热。其中的原理是,在电流一定的情况下,二极管因在T2时产生损耗 而变热。随着二极管温度升高,漏电流If增加,正向电压Vf减少。然而,增加的速度远高于减少的速度。其结果就是二极管内的总功耗增加较快。在较高的输出 电流下PT2也较高,使得PT1增加较快,所以在高电流下斜率较为陡峭。

 

同样,从中也能看到输入输出电压比的效果。左侧显示的 是5V输出、低占空比直流/直流转换器。占空比较低意味着T2较长,PT2就更多。因此,较多的初始热量导致Ir增加更快,PT1更高。最终结果就是随着 输出电流增加,二极管温度迅速上升。在较高的电流下,可以看到事实上温度已超出了指定范围之外。右侧显示较高的18V输出电压导致更高的占空比,从而抑制 了PT2。二极管内较少的发热量意味着Ir增加较少,因此,PT1和总体温度也都增加较少。

 

可以得出结论,占空比越高(或者说输出电压和输入电压越接近),二极管的热效应就越佳。例如,如果如前述计算,12V到2.5V的转换器要比12V到5V的转换器更能加重二极管的负担。

 

热逃逸

以上讨论的随温度升高而增加的效应会带来一个普遍问题,叫作热逃逸。升高的温度会导致温度进一步升高,直到部件损坏。因此,强烈建议在所有设计中彻底检查此现象。

 

目前常见的做法是对功耗设计进行模拟运行。可以使用标准的模拟工具,也可使用网上常用的模拟工具。仔细检查热效应是非常必要的。对于打算使用的二极管, 极有可能所使用的工具并未采用正确的热模型,或者其热参数(很可能和布局相关)与设计不相符合。很显然,并非每个二极管都一模一样,因而绝对不赞同在模拟 设计时使用“相似”的二极管,然后假定它们的热效应(以及潜在的电效应)也相似。虽然并非总是可行,但在此仍然建议始终制作原型并验证其正确效应。


-电子元器件采购网(www、oneyac、com)是本土元器件目录分销商,采用“小批量、现货、样品”销售模式,致力于满足客户多型号、高质量、快速交付的采购需求。自建高效智能仓储,拥有自营库存超50,000种,提供一站式正品现货采购、个性化解决方案、选项替代等多元化服务。 (本文来源网络整理,目的是传播有用的信息和知识,如有侵权,可联系管理员删除)

版权与免责声明

本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

发表评论

接线图网Copyright Your WebSite.Some Rights Reserved. 备案号:桂ICP备2022002688号-2 接线图网版权所有 联系作者QQ:360888349