图 2 显示了带有电感器的降压转换器应用。请注意,电感器的基本电路模型仅包括直流电阻和固定电感器值。直流电阻值将提供对电感器耗散的非常低的估计。有...
削减噪声增益来测量运算放大器的实时失调电压
接线图
2024年10月20日 19:22 11
admin
运算放大器最重要的规格之一是其输入失调电压。您可以在许多运算放大器上消除此电压,但确定输入失调电压的问题在于失调电压会随温度、闪烁噪声和长期漂移而变化。斩波和自动调零技术已经存在多年,可将可实现的输入失调降低到微伏或更低。精度如此之高,以至于其他微小的影响(例如铜焊热电偶结点)主导了误差,直到您付出一些努力,也可以克服它们。本设计理念引入了一种新型斩波。“斩波噪声增益”是一种实时测量失调电压的简单方法,以便您可以减去它并提高直流精度。
图 1 显示了 LTC6240HV 运算放大器的反相增益为 10 的配置,以及它的几个相关规格。所有输入失调都以增益 11(称为“噪声增益”)作为输出误差到达输出。任何下游电路或观察输出电压的观察者都无法区分输出误差和所需的输出信号。
图 2 显示了噪声增益斩波方法。S 1接通和断开 附加分流电阻 R 3 ,从而改变噪声增益而不影响信号增益或带宽。通常带宽会有所降低,但无论开关是打开还是关闭,C 1 都会主导带宽限制。现在,您在输出端施加一个小方波,其幅度等于当前直流误差。您可以像使用传统斩波器一样解调出误差,也可以在现代基于 ADC 的系统中用软件减去它。
图 2 中, S 1 接通或断开额外的分流电阻 R 3,从而改变噪声增益,但不影响信号增益或带宽。图 2 中的电路 很像一个简单的求和放大器,其中一个输入端既连接又断开。从这个意义上讲,它很像一个真正的斩波放大器。但是,在这种情况下,被斩波的输入电压是放大器失调,而不是输入信号。如果没有必要,为什么要断开输入信号呢?此外,没有必要进行连续斩波;只有在需要测量失调时才需要应用它。
请注意,尽管本设计方案为了便于理解而展示了反相情况,但只要 S 1有一个良好的模拟开关,非反相情况也是可行的。此外,与任何采样系统一样,等于或大于时钟速率的频率会混叠到基带中,因此您应该在斩波之前将其滤除。最后,这种方法不能纠正偏置或漏电流引起的误差。
开关 S 1 断开和闭合,增加噪声增益,并以 11 和 22 的交替噪声增益将输入误差施加到输出。产生的方波现在表示易于测量的“11 个误差”,然后可以从输出中减去该误差。这种技术类似于传统的斩波放大器,不同之处在于,在这种情况下,您斩波的是误差而不是信号。
图 3显示了 图 2 所示电路的输出波形图,输入电压为 0V(接地)。上方的迹线为“S”,即以 750 Hz 施加到 S 1 的控制信号 。下方的迹线为输出误差,在 1 和 2 mV 之间交替变化,表示运算放大器偏移为 90 μV。输出“看到”了输出偏移噪声增益加倍的效果。两个噪声增益之间的差值为 11,该差值决定了 S 1 引起的方波的幅度,与输入电压无关。图 3 该波形图显示了图 2 中电路的输出,输入电压为 0V(接地)。顶部轨迹为“S”,即以 750 Hz 施加到 S 1 的控制信号 。底部轨迹为输出误差,在 1 和 2 mV 之间交替变化。
图 4与 图 3 类似,但缩小了,输入电压为 2mV-pp 的缓慢移动正弦波信号,即 20mV-pp 输出。图 3 中的 1mV 方波 叠加在缓慢移动的输出信号上,仍然包含实时直流误差信息。只需查看输出,就可以发现信号的真实值比测量值低 1mV。图 4 波形图与图 3 类似,但在输入电压上施加了 2 mV pp 慢速正弦波信号。
相关文章
发表评论