首页 接线图文章正文

MCS-51单片机最小系统的组成部分及电路图

接线图 2023年02月15日 18:11 404 admin
MCS-51单片机是一种集成的电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。
  51系列单片机的特点  -8位cpu
  -片内带振荡器,频率范围为1.2MHz~12MHz
  -片内带128B的数据存储器
  -片内带4KB的程序存储器
  -程序存储器的寻址空间为64KB
  -片外数据存储器的寻址空间为64KB
  -128个用户位寻址空间
  -21个字节特殊功能寄存器
  -4个8位的I/O并行接口:P0、P1、P2、P3
  -两个16位定时、计数器
  -两个优先级别的五个中断源
  -一个全双工的串行I/O接口,可多机通信
  -111条指令,包含乘法指令和除法指令
  -片内采用单总线结构
  -有较强的位处理能力
  -采用单一+5V电源
MCS-51单片机最小系统的组成部分及电路图  第1张  单片机的应用分类  通用型
  这是按单片机(Microcontrollers)适用范围来区分的。例如,80C51式通用型单片机,它不是为某种专门用途设计的;专用型单片机是针对一类产品甚至某一个产品设计生产的,例如为了满足电子体温计的要求,在片内集成ADC接口等功能的温度测量控制电路
  总线型
  这是按单片机(Microcontrollers)是否提供并行总线来区分的。总线型单片机普遍设置有并行地址总线、 数据总线、控制总线,这些引脚用以扩展并行外围器件都可通过串行口与单片机连接,另外,许多单片机已把所需要的外围器件及外设接口集成一片内,因此在许多情况下可以不要并行扩展总线,大大减省封装成本和芯片体积,这类单片机称为非总线型单片机。
  控制型
  这是按照单片机(Microcontrollers)大致应用的领域进行区分的。一般而言,工控型寻址范围大,运算能力强;用于家电的单片机多为专用型,通常是小封装、低价格,外围器件和外设接口集成度高。 显然,上述分类并不是惟一的和严格的。例如,80C51类单片机既是通用型又是总线型,还可以作工控用。
  MCS-51单片机最小系统的组成部分及电路图MCS-51单片机最小系统的组成部分及电路图  第2张  图2 51系列单片机最小系统见

  下面就图2所示的单片机最小系统各部分电路进行详细说明。  1、时钟电路  在设计时钟电路之前,让我们先了解下51单片机上的时钟管脚:  XTAL1(19脚):芯片内部振荡电路输入端。  XTAL2(18脚):芯片内部振荡电路输出端。  XTAL1和XTAL2是独立的输入和输出反相放大器,它们可以被配置为使用石英晶振的片内振荡器,或者是器件直接由外部时钟驱动。图2中采用的是内时钟模式,即采用利用芯片内部的振荡电路,在XTAL1、XTAL2的引脚上外接定时元件(一个石英晶体和两个电容),内部振荡器便能产生自激振荡。一般来说晶振可以在1.2~12MHz之间任选,甚至可以达到24MHz或者更高,但是频率越高功耗也就越大。在本实验套件中采用的11.0592M的石英晶振。和晶振并联的两个电容的大小对振荡频率有微小影响,可以起到频率微调作用。当采用石英晶振时,电容可以在20~40pF之间选择(本实验套件使用30pF);当采用陶瓷谐振器件时,电容要适当地增大一些,在30~50pF之间。通常选取33pF的陶瓷电容就可以了。  另外值得一提的是如果读者自己在设计单片机系统的印刷电路板(PCB)时,晶体和电容应尽可能与单片机芯片靠近,以减少引线的寄生电容,保证振荡器可靠工作。检测晶振是否起振的方法可以用示波器可以观察到XTAL2输出的十分漂亮的正弦波,也可以使用万用表测量(把挡位打到直流挡,这个时候测得的是有效值)XTAL2和地之间的电压时,可以看到2V左右一点的电压。  2、复位电路  在单片机系统中,复位电路是非常关键的,当程序跑飞(运行不正常)或死机(停止运行)时,就需要进行复位。  MCS-5l系列单片机的复位引脚RST(第9管脚)出现2个机器周期以上的高电平时,单片机就执行复位操作。如果RST持续为高电平,单片机就处于循环复位状态。  复位操作通常有两种基本形式:上电自动复位和开关复位。图2中所示的复位电路就包括了这两种复位方式。上电瞬间,电容两端电压不能突变,此时电容的负极和RESET相连,电压全部加在了电阻上,RESET的输入为高,芯片被复位。随之+5V电源给电容充电,电阻上的电压逐渐减小,最后约等于0,芯片正常工作。并联在电容的两端为复位按键,当复位按键没有被按下的时候电路实现上电复位,在芯片正常工作后,通过按下按键使RST管脚出现高电平达到手动复位的效果。一般来说,只要RST管脚上保持10ms以上的高电平,就能使单片机有效的复位。图中所示的复位电阻和电容为经典值,实际制作是可以用同一数量级的电阻和电容代替,读者也可自行计算RC充电时间或在工作环境实际测量,以确保单片机的复位电路可靠。  3、EA/VPP(31脚)的功能和接法  51单片机的EA/VPP(31脚)是内部和外部程序存储器的选择管脚。当EA保持高电平时,单片机访问内部程序存储器;当EA保持低电平时,则不管是否有内部程序存储器,只访问外部存储器。  对于现今的绝大部分单片机来说,其内部的程序存储器(一般为flash)容量都很大,因此基本上不需要外接程序存储器,而是直接使用内部的存储器。  在本实验套件中,EA管脚接到了VCC上,只使用内部的程序存储器。这一点一定要注意,很多初学者常常将EA管脚悬空,从而导致程序执行不正常。  4、P0口外接上拉电阻  51单片机的P0端口为开漏输出,内部无上拉电阻(见图3)。所以在当做普通I/O输出数据时,由于V2截止,输出级是漏极开路电路,要使“1”信号(即高电平)正常输出,必须外接上拉电阻。MCS-51单片机最小系统的组成部分及电路图  第3张
  图3P0端口的1位结构  另外,避免输入时读取数据出错,也需外接上拉电阻。在这里简要的说下其原因:在输入状态下,从锁存器和从引脚上读来的信号一般是一致的,但也有例外。例如,当从内部总线输出低电平后,锁存器Q=0,Q=1,场效应管V1开通,端口线呈低电平状态。此时无论端口线上外接的信号是低电平还是高电平,从引脚读入单片机的信号都是低电平,因而不能正确地读入端口引脚上的信号。又如,当从内部总线输出高电平后,锁存器Q=1,Q=0,场效应管V1截止。如外接引脚信号为低电平,从引脚上读入的信号就与从锁存器读入的信号不同。所以当P0口作为通用I/O接口输入使用时,在输入数据前,应先向P0口写“1”,此时锁存器的Q端为“0”,使输出级的两个场效应管V1、V2均截止,引脚处于悬浮状态,才可作高阻输入。  总结来说:为了能使P0口在输出时能驱动NMOS电路和避免输入时读取数据出错,需外接上拉电阻。在本实验套件中采用的是外加一个10K排阻。此外,51单片机在对端口P0—P3的输入操作上,为避免读错,应先向电路中的锁存器写入“1”,使场效应管截止,以避免锁存器为“0”状态时对引脚读入的干扰。  5、LED 驱动电路  细心的读者可能已经发现,在最小系统中,发光二极管(LED)的接法是采取了电源接到二极管正极再经过1K 电阻接到单片机I/O 口上的(见图4 中的接法1)。为什么这么接呢?首先我们要知道LED 的发光工作条件,不同的LED 其额定电压和额定电流不同,一般而言,红或绿颜色的LED 的工作电压为1.7V~2.4V,蓝或白颜色的LED 工作电压为2.7~4.2V, 直径为3mm LED 的工作电流2mA~10mA。在这里采用红色的3mm 的LED。其次,51 单片机(如本实验板中所使用的STC89C52单片机)的I/O 口作为输出口时,拉电流(向外输出电流)的能力是μA 级别,是不足以点亮一个发光二极管的。而灌电流(往内输入电流)的方式可高达20mA,故采用灌电流的方式驱动发光二极管。当然,现今的一些增强型单片机,是采用拉电流输出(接法2)的,只要单片机的输出电流能力足够强即可。另外,图4 中的电阻为1K 阻值,是为了限制电流,让发光二极管的工作电流限定在2mA~10mA。MCS-51单片机最小系统的组成部分及电路图  第4张



版权与免责声明

本网转载并注明自其它出处的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品出处,并自负版权等法律责任。

如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

标签: 51单片机

发表评论

接线图网Copyright Your WebSite.Some Rights Reserved. 备案号:桂ICP备2022002688号-2 接线图网版权所有 联系作者QQ:360888349