0、引言 在自动控制的很多应用场合, 都需要实时对信号进行采样分析, 然后由DSP来进行运算控制。AD芯片是采样中最常用的芯片, 本文主要对AD...
一种新颖的简易多通道虚拟示波器系统电路设计
数据采集电路设计
ATmega16单片机是美国Atmel公司生产的基于增强的AVR RISC结构的低功耗8 位CMOS微控制器。ATmega16有如下特点:16k字节的系统内可编程Flash(具有同时读写的能力,即RWW),512字节EEPROM,1k字节SRAM,32个通用I/O口线,32个通用工作寄存器,用于边界扫描的JTAG接口,支持片内调试与编程,三个具有比较模式的灵活的定时器/计数器(T/C),片内/外中断,可编程串行USART,有起始条件检测器的通用串行接口,8路 10位具有可选差分输入级可编程增益(TQFP封装)的ADC,具有片内振荡器的可编程看门狗定时器,一个SPI 串行端口,以及六个可以通过软件进行选择的省电模式。
图2 采样电路原理图。
本设计正是利用ATmega16的8路10位可编程增益的逐次比较型ADC及可编程异步串行接口的内部资源,从而简化了电路设计的难度及编程难度。采样电路的电路图如图2所示,ATmega16只需结合简单的晶振电路和复位电路就可以完成本设计的需求。模拟信号通过8路模拟输入的任意端口输入即可,通过单片机内部程序控制,很容易就将输入模拟量转化为数字量。单片机再通过串行接口传输给PC机, 串行通信通过串行发送引脚TXD(PD1)和串行接收引脚RXD(PD0)连接串行通信接口电路实现数据的串行传送与接收。
串口通信接口电路设计
本系统设计中通过Max232连接单片机和PC机。ATmega16 具有异步串行通讯接口(UART),UART是为能与计算机通讯的全双工异步系统。本系统采用RS232接口方式, 由于RS232信号电平与AVR单片机信号电平(TTL 电平)不一致,因此在采用RS232标准时必须进行信号电平转换。在串行通信的接口电路中选用MAX232芯片作为信号电平转换芯片,实现TTL电平和 RS232接口电平之间的转换。从而把ATmega16内部需要传送的数字信号准确无误地传输给PC机,供上位机软件读取并进行信号处理。
串行接口电路原理图如图3所示,TTL电平引脚输入引脚9、10,连接ATmega16的串行发送接口TXD和串行接收接口RXD,通过电平转换为RS232电平,通过7脚和8脚连接串行接口的2脚和3脚,串行接口通过串行通信线连接采样模块的串行接口和PC机的串行接口。ATmega16通过内部编程很方便地把数据传送给PC机。
图3 串口通信接口电路图。
多通道采样原理:由于ATmega16内部ADC为8选1数据通道,在具体实现某路数据采集时就必须更改多工选择寄存器ADMUX的数值。为能随时更改通道,本设计采用主从方式,通过上位机发送给ATmega16的数值来改变通道。在ATmega16的串行中断的接收中断中, 通过判断接收的数值更改ADMUX的数值。同时,在串行接口接收中断中,通过接收的数值的编码也可用来改变ADC相邻两次转换之间的延时值,从而达到改变转换速率的效果,当需要采集双通道数值时,单片机内部ADC可采用分时复用的原则,同时将获得的八位数据加一个最高标志位,扩展为九位数据位。上位机通过对数据的最高位的校验,可以很方便地区分数据,在显示界面上将双通道波形实时显示更新。
本文设计的虚拟示波器系统由单片机ATmega16和Max232构成的下位机系统及由LabVIEW开发的上位机软件构成。系统充分利用 ATmega16单片机软硬件资源,方便快捷地实现数据采集。并且通过RS232接口实现与上位PC机的连接,PC机通过LabVIEW开发平台方便地实现进行数据的分析、处理、存储和打印输出的简易虚拟示波器。本系统具有电路简单、使用灵活方便等特点。因此能广泛应用于工业、农业、水文系统、环境监测等领域,实现现场勘测和数据采集。
相关文章
发表评论